{"id":153608,"date":"2008-01-01T00:00:00","date_gmt":"2008-01-01T00:00:00","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/msr-research-item\/object-class-segmentation-using-random-forests\/"},"modified":"2018-10-16T20:14:06","modified_gmt":"2018-10-17T03:14:06","slug":"object-class-segmentation-using-random-forests","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/object-class-segmentation-using-random-forests\/","title":{"rendered":"Object Class Segmentation using Random Forests"},"content":{"rendered":"
This work investigates the use of Random Forests for class based pixel-wise segmentation of images. The contribution of this paper is three-fold. First, we show that apparently quite dissimilar classi\ufb01ers (such as nearest neighbour matching to texton class histograms) can be mapped onto a Random Forest architecture. Second, based on this insight, we show that the performance of such classi\ufb01ers can be improved by incorporating the spatial context and discriminative learning that arises naturally in the Random Forest framework. Finally, we show that the ability of Random Forests to combine multiple features leads to a further increase in performance when textons, colour, \ufb01lterbanks, and HOG features are used simultaneously. The bene\ufb01t of the multi-feature classi\ufb01er is demonstrated with extensive experimentation on existing labelled image datasets. The method equals or exceeds the state of the art on these datasets.<\/p>\n","protected":false},"excerpt":{"rendered":"
This work investigates the use of Random Forests for class based pixel-wise segmentation of images. The contribution of this paper is three-fold. First, we show that apparently quite dissimilar classi\ufb01ers (such as nearest neighbour matching to texton class histograms) can be mapped onto a Random Forest architecture. Second, based on this insight, we show that […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-153608","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-locale-en_us"],"msr_publishername":"","msr_edition":"Proc. British Machine Vision Conference (BMVC)","msr_affiliation":"","msr_published_date":"2008-01-01","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"Proc. British Machine Vision Conference (BMVC)","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"208344","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","title":"Criminisi_bmvc2008.pdf","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/Criminisi_bmvc2008.pdf","id":208344,"label_id":0}],"msr_related_uploader":"","msr_attachments":[{"id":208344,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/Criminisi_bmvc2008.pdf"}],"msr-author-ordering":[{"type":"text","value":"Florian Schroff","user_id":0,"rest_url":false},{"type":"user_nicename","value":"antcrim","user_id":31055,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=antcrim"},{"type":"text","value":"Andrew Zisserman","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[],"msr_project":[171004,169717],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":171004,"post_title":"Decision Forests","post_name":"decision-forests","post_type":"msr-project","post_date":"2012-07-25 01:35:22","post_modified":"2017-06-06 12:09:49","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/decision-forests\/","post_excerpt":"Decision Forests for Computer Vision and Medical Image Analysis A. Criminisi and J. Shotton Springer 2013, XIX, 368 p. 143 illus., 136 in color. ISBN 978-1-4471-4929-3 \u00a0","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/171004"}]}},{"ID":169717,"post_title":"Image Understanding","post_name":"image-understanding","post_type":"msr-project","post_date":"2008-10-07 05:23:23","post_modified":"2023-05-15 09:56:35","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/image-understanding\/","post_excerpt":"At Microsoft Research in Cambridge we are developing new machine vision algorithms for automatic recognition and segmentation of many different object categories. We are interested in both the supervised and unsupervised scenarios.","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/169717"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/153608"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/153608\/revisions"}],"predecessor-version":[{"id":524493,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/153608\/revisions\/524493"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=153608"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=153608"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=153608"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=153608"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=153608"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=153608"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=153608"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=153608"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=153608"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=153608"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=153608"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=153608"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=153608"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=153608"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=153608"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=153608"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}