{"id":154365,"date":"2007-07-01T00:00:00","date_gmt":"2007-07-01T00:00:00","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/msr-research-item\/heavy-tailed-distributions-and-multi-keyword-queries\/"},"modified":"2018-10-16T20:38:09","modified_gmt":"2018-10-17T03:38:09","slug":"heavy-tailed-distributions-and-multi-keyword-queries","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/heavy-tailed-distributions-and-multi-keyword-queries\/","title":{"rendered":"Heavy-Tailed Distributions and Multi-Keyword Queries"},"content":{"rendered":"
\n

Intersecting inverted indexes is a fundamental operation for many applications in information retrieval and databases. Efficient indexing for this operation is known to be a hard problem for arbitrary data distributions. However, text corpora used in Information Retrieval applications often have convenient power-law constraints (also known as Zipf\u2019s Law and long tails) that allow us to materialize carefully chosen combinations of multi-keyword indexes, which significantly improve worst-case performance without requiring excessive storage. These multi-keyword indexes limit the number of postings accessed when computing arbitrary index intersections. Our evaluation on an e-commerce collection of 20 million products shows that the indexes of up to four arbitrary keywords can be intersected while accessing less than 20% of the postings in the largest single-keyword index.<\/p>\n<\/div>\n

<\/p>\n","protected":false},"excerpt":{"rendered":"

Intersecting inverted indexes is a fundamental operation for many applications in information retrieval and databases. Efficient indexing for this operation is known to be a hard problem for arbitrary data distributions. However, text corpora used in Information Retrieval applications often have convenient power-law constraints (also known as Zipf\u2019s Law and long tails) that allow us […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13555],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-154365","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-search-information-retrieval","msr-locale-en_us"],"msr_publishername":"Association for Computing Machinery, Inc.","msr_edition":"30th ACM SIGIR International Conference on Research & Developement on Information Retreival","msr_affiliation":"","msr_published_date":"2007-07-01","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"208569","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","title":"SIGIR07.pdf","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/SIGIR07.pdf","id":208569,"label_id":0}],"msr_related_uploader":"","msr_attachments":[{"id":208569,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/SIGIR07.pdf"}],"msr-author-ordering":[{"type":"user_nicename","value":"surajitc","user_id":33764,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=surajitc"},{"type":"text","value":"Kenneth Church","user_id":0,"rest_url":false},{"type":"text","value":"Liying Sui","user_id":0,"rest_url":false},{"type":"user_nicename","value":"chrisko","user_id":31427,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=chrisko"},{"type":"text","value":"Arnd Christian K\u00f6nig","user_id":0,"rest_url":false},{"type":"user_nicename","value":"church","user_id":31439,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=church"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[957177],"msr_project":[169514],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":169514,"post_title":"Data Exploration","post_name":"data-exploration","post_type":"msr-project","post_date":"2004-06-08 15:56:40","post_modified":"2017-06-06 10:57:58","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/data-exploration\/","post_excerpt":"This is a project area rather than a specific project. This project area focuses on novel ways to query, browse, extract, explore, mine and manage various kinds of data residing within the enterprise and on the web: structured data in relational databases, tabular data embedded in web pages, enterprise documents and spreadsheets as well as unstructured data in query logs, text documents and social media. Our research is relevant to both enterprise and consumer scenarios…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/169514"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/154365","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":2,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/154365\/revisions"}],"predecessor-version":[{"id":529209,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/154365\/revisions\/529209"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=154365"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=154365"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=154365"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=154365"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=154365"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=154365"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=154365"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=154365"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=154365"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=154365"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=154365"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=154365"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=154365"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=154365"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=154365"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=154365"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}