{"id":154426,"date":"2008-01-01T00:00:00","date_gmt":"2008-01-01T00:00:00","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/msr-research-item\/constrained-physical-design-tuning\/"},"modified":"2024-02-26T16:45:23","modified_gmt":"2024-02-27T00:45:23","slug":"constrained-physical-design-tuning","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/constrained-physical-design-tuning\/","title":{"rendered":"Constrained Physical Design Tuning"},"content":{"rendered":"
\n

Existing solutions to the automated physical design problem in database systems attempt tominimize execution costs of input workloads for a given a storage constraint. In this paper, we argue that this model is not flexible enough to address several real-world situations. To overcome this limitation, we introduce a constraint language that is simple yet powerful enough to express many important scenarios. We build upon an existing transformation-based framework to effectively incorporate constraints in the search space. We then show experimentally that we are able to handle a rich class of constraints and that our proposed technique scales gracefully.<\/p>\n<\/div>\n

<\/p>\n","protected":false},"excerpt":{"rendered":"

Existing solutions to the automated physical design problem in database systems attempt tominimize execution costs of input workloads for a given a storage constraint. In this paper, we argue that this model is not flexible enough to address several real-world situations. To overcome this limitation, we introduce a constraint language that is simple yet powerful […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13563],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-154426","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-data-platform-analytics","msr-locale-en_us"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2008-1-1","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"225886","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2008\/01\/paper75-revised.pdf","id":"225886","title":"paper75-revised.pdf","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[{"id":225886,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2008\/01\/paper75-revised.pdf"}],"msr-author-ordering":[{"type":"user_nicename","value":"Surajit Chaudhuri","user_id":33764,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Surajit Chaudhuri"},{"type":"user_nicename","value":"Nico Bruno","user_id":43155,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Nico Bruno"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[957177],"msr_project":[169456],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":169456,"post_title":"AutoAdmin","post_name":"autoadmin","post_type":"msr-project","post_date":"2001-11-02 14:41:11","post_modified":"2019-02-05 12:04:17","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/autoadmin\/","post_excerpt":"Database management systems provide functionality that is central to developing business applications. Therefore, database management systems are increasingly being used as an important component in applications. Yet, the problem of tuning database management systems for achieving required performance is significant, and results in high total cost of ownership (TCO). The goal of our research in the AutoAdmin project is to make database systems self-tuning and self-administering. We achieve this by enabling databases to track the…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/169456"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/154426"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":3,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/154426\/revisions"}],"predecessor-version":[{"id":1009983,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/154426\/revisions\/1009983"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=154426"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=154426"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=154426"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=154426"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=154426"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=154426"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=154426"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=154426"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=154426"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=154426"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=154426"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=154426"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=154426"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=154426"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=154426"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=154426"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}