{"id":154560,"date":"2008-04-01T00:00:00","date_gmt":"2008-04-01T00:00:00","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/msr-research-item\/differential-privacy-a-survey-of-results\/"},"modified":"2018-10-16T21:05:36","modified_gmt":"2018-10-17T04:05:36","slug":"differential-privacy-a-survey-of-results","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/differential-privacy-a-survey-of-results\/","title":{"rendered":"Differential Privacy: A Survey of Results"},"content":{"rendered":"
Over the past five years a new approach to privacy-preserving data analysis has born fruit [13, 18, 7, 19, 5, 37, 35, 8, 32]. This approach differs from much (but not all!) of the related literature in the statistics, databases, theory, and cryptography communities, in that a formal and ad omnia privacy guarantee is defined, and the data analysis techniques presented are rigorously proved to satisfy the guarantee. The key privacy guarantee that has emerged is differential privacy. Roughly speaking, this ensures that (almost, and quantifiably) no risk is incurred by joining a statistical database.<\/p>\n
In this survey, we recall the definition of differential privacy and two basic techniques for achieving it. We then show some interesting applications of these techniques, presenting algorithms for three specific tasks and three general results on differentially private learning.<\/p>\n<\/div>\n
<\/p>\n","protected":false},"excerpt":{"rendered":"
Over the past five years a new approach to privacy-preserving data analysis has born fruit [13, 18, 7, 19, 5, 37, 35, 8, 32]. This approach differs from much (but not all!) of the related literature in the statistics, databases, theory, and cryptography communities, in that a formal and ad omnia privacy guarantee is defined, […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13561,13558],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-154560","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-algorithms","msr-research-area-security-privacy-cryptography","msr-locale-en_us"],"msr_publishername":"Springer Verlag","msr_edition":"Theory and Applications of Models of Computation\u2014TAMC","msr_affiliation":"","msr_published_date":"2008-04-01","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"1-19","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"4978","msr_number":"","msr_editors":"","msr_series":"Lecture Notes in Computer Science","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"223609","msr_publicationurl":"http:\/\/dx.doi.org\/10.1007\/978-3-540-79228-4_1","msr_doi":"","msr_publication_uploader":[{"type":"file","title":"dwork_tamc.pdf","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2008\/04\/dwork_tamc.pdf","id":223609,"label_id":0},{"type":"url","title":"http:\/\/dx.doi.org\/10.1007\/978-3-540-79228-4_1","viewUrl":false,"id":false,"label_id":0}],"msr_related_uploader":"","msr_attachments":[{"id":0,"url":"http:\/\/dx.doi.org\/10.1007\/978-3-540-79228-4_1"},{"id":223609,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2008\/04\/dwork_tamc.pdf"}],"msr-author-ordering":[{"type":"user_nicename","value":"dwork","user_id":31702,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=dwork"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[],"msr_project":[169518],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":169518,"post_title":"Database Privacy","post_name":"database-privacy","post_type":"msr-project","post_date":"2003-11-24 13:44:35","post_modified":"2020-03-12 16:39:21","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/database-privacy\/","post_excerpt":"Overview The problem of statistical disclosure control\u2014revealing accurate statistics about a population while preserving the privacy of individuals\u2014has a venerable history. An extensive literature spans multiple disciplines: statistics, theoretical computer science, security, and databases.\u00a0 Nevertheless, despite this extensive literature, \u00abprivacy breaches\u00bb are common, both in the literature and in practice, even when security and data integrity are not compromised. This project revisits private data analysis from the perspective of modern cryptography.\u00a0 We address many previous…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/169518"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/154560"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":2,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/154560\/revisions"}],"predecessor-version":[{"id":532785,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/154560\/revisions\/532785"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=154560"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=154560"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=154560"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=154560"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=154560"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=154560"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=154560"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=154560"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=154560"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=154560"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=154560"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=154560"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=154560"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=154560"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=154560"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=154560"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}