{"id":154609,"date":"2007-10-01T00:00:00","date_gmt":"2007-10-01T00:00:00","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/msr-research-item\/discriminant-embedding-for-local-image-descriptors\/"},"modified":"2018-10-16T21:10:37","modified_gmt":"2018-10-17T04:10:37","slug":"discriminant-embedding-for-local-image-descriptors","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/discriminant-embedding-for-local-image-descriptors\/","title":{"rendered":"Discriminant Embedding for Local Image Descriptors"},"content":{"rendered":"
Invariant feature descriptors such as SIFT and GLOH have been demonstrated to be very robust for image matching and visual recognition. However, such descriptors are generally parameterised in very high dimensional spaces e.g. 128 dimensions in the case of SIFT. This limits the performance of feature matching techniques in terms of speed and scalability. Furthermore, these descriptors have traditionally been carefully hand crafted by manually tuning many parameters. In this paper, we tackle both of these problems by formulating descriptor design as a nonparametric dimensionality reduction problem. In contrast to previous approaches that use only the global statistics of the inputs, we adopt a discriminative approach. Starting from a large training set of labelled match\/non-match pairs, we pursue lower dimensional embeddings that are optimised for their discriminative power. Extensive comparative experiments demonstrate that we can exceed the performance of the current state of the art techniques such as SIFT with far fewer dimensions, and with virtually no parameters to be tuned by hand.<\/p>\n<\/div>\n
<\/p>\n","protected":false},"excerpt":{"rendered":"
Invariant feature descriptors such as SIFT and GLOH have been demonstrated to be very robust for image matching and visual recognition. However, such descriptors are generally parameterised in very high dimensional spaces e.g. 128 dimensions in the case of SIFT. This limits the performance of feature matching techniques in terms of speed and scalability. Furthermore, […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13562],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-154609","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-computer-vision","msr-locale-en_us"],"msr_publishername":"","msr_edition":"International Conference on Computer Vision","msr_affiliation":"","msr_published_date":"2007-10-01","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"International Conference on Computer Vision","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"226315","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","title":"hua_brown_winder_iccv07.pdf","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2007\/10\/hua_brown_winder_iccv07.pdf","id":226315,"label_id":0}],"msr_related_uploader":"","msr_attachments":[{"id":226315,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2007\/10\/hua_brown_winder_iccv07.pdf"}],"msr-author-ordering":[{"type":"text","value":"Gang Hua","user_id":0,"rest_url":false},{"type":"text","value":"Matthew Brown","user_id":0,"rest_url":false},{"type":"user_nicename","value":"swinder","user_id":33778,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=swinder"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[],"msr_project":[170255],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":170255,"post_title":"Core Tools for Augmented Reality","post_name":"core-tools-for-augmented-reality","post_type":"msr-project","post_date":"2009-04-28 15:15:15","post_modified":"2019-08-19 15:30:01","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/core-tools-for-augmented-reality\/","post_excerpt":"We aim to enable people with mobile devices to receive continuously updated information about their surroundings by pointing a camera. The system is able to use image recognition to augment what a person sees on the screen with 2D or 3D graphics that track their environment in real time. We demonstrate this using a treasure hunt game which guides the user along a previously authored path indoors or outdoors using geo-located arrows or floating 3D…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/170255"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/154609"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":2,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/154609\/revisions"}],"predecessor-version":[{"id":533541,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/154609\/revisions\/533541"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=154609"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=154609"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=154609"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=154609"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=154609"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=154609"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=154609"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=154609"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=154609"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=154609"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=154609"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=154609"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=154609"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=154609"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=154609"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=154609"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}