{"id":154779,"date":"2002-01-01T00:00:00","date_gmt":"2002-01-01T00:00:00","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/msr-research-item\/evaluation-of-spoken-language-grammar-learning-in-atis-domain\/"},"modified":"2018-10-16T21:33:33","modified_gmt":"2018-10-17T04:33:33","slug":"evaluation-of-spoken-language-grammar-learning-in-atis-domain","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/evaluation-of-spoken-language-grammar-learning-in-atis-domain\/","title":{"rendered":"Evaluation of Spoken Language Grammar Learning in ATIS Domain"},"content":{"rendered":"
To facilitate the development of speech enabled applications and services, researchers have been working on a variety of smart tools. Recently, we introduced a schema-based context free grammar learning algorithm aiming at the development of real applications. In that paper, we described the algorithm and gave some experimental results on the data of our in-house project. To study the general applicability of the algorithm as well as to provide the research community with more informative results, we apply the algorithm to the well studied ATIS (Airline Travel Information System) task and compare the performance of the learned grammar with one of the best performers in ATIS evaluations. The results show that the semi-automatically learned grammar achieves comparable performance to the manually authored grammar.<\/p>\n<\/div>\n
<\/p>\n","protected":false},"excerpt":{"rendered":"
To facilitate the development of speech enabled applications and services, researchers have been working on a variety of smart tools. Recently, we introduced a schema-based context free grammar learning algorithm aiming at the development of real applications. In that paper, we described the algorithm and gave some experimental results on the data of our in-house […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13545],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-154779","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-human-language-technologies","msr-locale-en_us"],"msr_publishername":"Institute of Electrical and Electronics Engineers, Inc.","msr_edition":"IEEE International Conference on Acoustics, Speech, and Signal Processing","msr_affiliation":"","msr_published_date":"2002-01-01","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"I-41- I-44","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"1","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"222685","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","title":"2002-yeyiwang-icassp.pdf","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2002\/01\/2002-yeyiwang-icassp.pdf","id":222685,"label_id":0}],"msr_related_uploader":"","msr_attachments":[{"id":222685,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2002\/01\/2002-yeyiwang-icassp.pdf"}],"msr-author-ordering":[{"type":"user_nicename","value":"yeyiwang","user_id":34993,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=yeyiwang"},{"type":"user_nicename","value":"alexac","user_id":30932,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=alexac"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[],"msr_project":[171150,170147],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":171150,"post_title":"Spoken Language Understanding","post_name":"spoken-language-understanding","post_type":"msr-project","post_date":"2013-05-01 11:46:32","post_modified":"2019-08-19 14:48:51","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/spoken-language-understanding\/","post_excerpt":"Spoken language understanding (SLU) is an emerging field in between the areas of speech processing and natural language processing. The term spoken language understanding has largely been coined for targeted understanding of human speech directed at machines. This project covers our research on SLU tasks such as domain detection, intent determination, and slot filling, using data-driven methods. Projects Deeper Understanding: Moving\u00a0beyond shallow targeted understanding towards building domain independent SLU models. Scaling SLU: Quickly bootstrapping SLU…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/171150"}]}},{"ID":170147,"post_title":"Understand User's Intent from Speech and Text","post_name":"understand-users-intent-from-speech-and-text","post_type":"msr-project","post_date":"2008-12-17 11:20:26","post_modified":"2019-08-19 15:33:37","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/understand-users-intent-from-speech-and-text\/","post_excerpt":"Understanding what users like to do\/need to get is critical in human computer interaction. When natural user interface like speech or natural language is used in human-computer interaction, such as in a spoken dialogue system or with an internet search engine, language understanding becomes an important issue. Intent understanding is about identifying the action a user wants a computer to take or the information she\/he would like to obtain, conveyed in a spoken utterance or…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/170147"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/154779"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":2,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/154779\/revisions"}],"predecessor-version":[{"id":536922,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/154779\/revisions\/536922"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=154779"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=154779"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=154779"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=154779"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=154779"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=154779"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=154779"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=154779"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=154779"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=154779"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=154779"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=154779"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=154779"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=154779"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=154779"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=154779"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}