{"id":154847,"date":"2006-01-01T00:00:00","date_gmt":"2006-01-01T00:00:00","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/msr-research-item\/discriminative-models-for-spoken-language-understanding\/"},"modified":"2018-10-16T21:42:24","modified_gmt":"2018-10-17T04:42:24","slug":"discriminative-models-for-spoken-language-understanding","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/discriminative-models-for-spoken-language-understanding\/","title":{"rendered":"Discriminative Models for Spoken Language Understanding."},"content":{"rendered":"
\n

This paper studies several discriminative models for spoken language understanding (SLU). While all of them fall into the conditional model framework, different optimization criteria lead to conditional random fields, perceptron, minimum classification error and large margin models. The paper discusses the relationship amongst these models and compares them in terms of accuracy, training speed and robustness.<\/p>\n<\/div>\n

<\/p>\n","protected":false},"excerpt":{"rendered":"

This paper studies several discriminative models for spoken language understanding (SLU). While all of them fall into the conditional model framework, different optimization criteria lead to conditional random fields, perceptron, minimum classification error and large margin models. The paper discusses the relationship amongst these models and compares them in terms of accuracy, training speed and […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13545],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-154847","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-human-language-technologies","msr-locale-en_us"],"msr_publishername":"International Speech Communication Association","msr_edition":"the International Conference on Spoken Language Processing","msr_affiliation":"","msr_published_date":"2006-01-01","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"1766-1769","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"229627","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","title":"2006-wang-acero-icslp.pdf","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2006\/01\/2006-wang-acero-icslp.pdf","id":229627,"label_id":0}],"msr_related_uploader":"","msr_attachments":[{"id":229627,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2006\/01\/2006-wang-acero-icslp.pdf"}],"msr-author-ordering":[{"type":"user_nicename","value":"yeyiwang","user_id":34993,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=yeyiwang"},{"type":"user_nicename","value":"alexac","user_id":30932,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=alexac"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[],"msr_project":[171150,170147,169461],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":171150,"post_title":"Spoken Language Understanding","post_name":"spoken-language-understanding","post_type":"msr-project","post_date":"2013-05-01 11:46:32","post_modified":"2019-08-19 14:48:51","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/spoken-language-understanding\/","post_excerpt":"Spoken language understanding (SLU) is an emerging field in between the areas of speech processing and natural language processing. The term spoken language understanding has largely been coined for targeted understanding of human speech directed at machines. This project covers our research on SLU tasks such as domain detection, intent determination, and slot filling, using data-driven methods. Projects Deeper Understanding: Moving\u00a0beyond shallow targeted understanding towards building domain independent SLU models. Scaling SLU: Quickly bootstrapping SLU…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/171150"}]}},{"ID":170147,"post_title":"Understand User's Intent from Speech and Text","post_name":"understand-users-intent-from-speech-and-text","post_type":"msr-project","post_date":"2008-12-17 11:20:26","post_modified":"2019-08-19 15:33:37","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/understand-users-intent-from-speech-and-text\/","post_excerpt":"Understanding what users like to do\/need to get is critical in human computer interaction. When natural user interface like speech or natural language is used in human-computer interaction, such as in a spoken dialogue system or with an internet search engine, language understanding becomes an important issue. Intent understanding is about identifying the action a user wants a computer to take or the information she\/he would like to obtain, conveyed in a spoken utterance or…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/170147"}]}},{"ID":169461,"post_title":"Automatic Grammar Induction","post_name":"automatic-grammar-induction","post_type":"msr-project","post_date":"2002-02-19 14:32:24","post_modified":"2019-08-14 14:41:22","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/automatic-grammar-induction\/","post_excerpt":"Automatic learning of speech recognition grammars from example sentences to ease the development of spoken language systems. Researcher Ye-Yi Wang wants to have more time for vacation, so he is teaching his computer to do some work for him. Wang has been working on Spoken Language Understanding for the MiPad project since he was hired to Microsoft Research. He has developed a robust parser and the understanding grammars for several projects. \"Grammar development is painful…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/169461"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/154847"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":2,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/154847\/revisions"}],"predecessor-version":[{"id":538292,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/154847\/revisions\/538292"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=154847"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=154847"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=154847"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=154847"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=154847"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=154847"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=154847"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=154847"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=154847"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=154847"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=154847"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=154847"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=154847"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=154847"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=154847"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=154847"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}