{"id":155244,"date":"2005-10-01T00:00:00","date_gmt":"2005-10-01T00:00:00","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/msr-research-item\/mindnet-an-automatically-created-lexical-resource\/"},"modified":"2018-10-16T22:05:08","modified_gmt":"2018-10-17T05:05:08","slug":"mindnet-an-automatically-created-lexical-resource","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/mindnet-an-automatically-created-lexical-resource\/","title":{"rendered":"MindNet: An Automatically-Created Lexical Resource"},"content":{"rendered":"

We will demonstrate MindNet, a lexical resource built automatically by processing text. We will present two forms of MindNet: as a static lexical resource, and, as a toolkit which allows MindNets to be built from arbitrary text. We will also introduce a web-based interface to MindNet lexicons (MNEX) that is intended to make the data contained within MindNets more accessible for exploration. Both English and Japanese MindNets will be shown and will be made available, through MNEX, for research purposes.<\/p>\n","protected":false},"excerpt":{"rendered":"

We will demonstrate MindNet, a lexical resource built automatically by processing text. We will present two forms of MindNet: as a static lexical resource, and, as a toolkit which allows MindNets to be built from arbitrary text. We will also introduce a web-based interface to MindNet lexicons (MNEX) that is intended to make the data […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-155244","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-locale-en_us"],"msr_publishername":"","msr_edition":"HLT\/EMNLP Interactive Demonstrations Proceedings","msr_affiliation":"","msr_published_date":"2005-10-01","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"HLT\/EMNLP Interactive Demonstrations Proceedings","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"229156","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","title":"emnlp2005_MindNet.pdf","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2005\/10\/emnlp2005_MindNet.pdf","id":229156,"label_id":0}],"msr_related_uploader":"","msr_attachments":[{"id":229156,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2005\/10\/emnlp2005_MindNet.pdf"}],"msr-author-ordering":[{"type":"user_nicename","value":"lucyv","user_id":32746,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=lucyv"},{"type":"text","value":"Gary Kacmarcik","user_id":0,"rest_url":false},{"type":"user_nicename","value":"hisamis","user_id":32009,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=hisamis"},{"type":"user_nicename","value":"arulm","user_id":31103,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=arulm"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[],"msr_project":[169675],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":169675,"post_title":"MindNet","post_name":"mindnet","post_type":"msr-project","post_date":"2001-12-19 17:44:32","post_modified":"2019-08-14 14:34:33","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/mindnet\/","post_excerpt":"Overview MindNet is a knowledge representation project that uses our broad-coverage parser to build semantic networks from dictionaries, encyclopedias, and free text. MindNets are produced by a fully automatic process that takes the input text, sentence-breaks it, parses each sentence to build a semantic dependency graph (Logical Form), aggregates these individual graphs into a single large graph, and then assigns probabilistic weights to subgraphs based on their frequency in the corpus as a whole. The…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/169675"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/155244"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/155244\/revisions"}],"predecessor-version":[{"id":417416,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/155244\/revisions\/417416"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=155244"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=155244"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=155244"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=155244"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=155244"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=155244"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=155244"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=155244"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=155244"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=155244"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=155244"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=155244"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=155244"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=155244"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=155244"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=155244"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}