{"id":155253,"date":"2003-01-01T00:00:00","date_gmt":"2003-01-01T00:00:00","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/msr-research-item\/robust-and-efficient-fuzzy-match-for-online-data-cleaning\/"},"modified":"2018-10-16T22:05:41","modified_gmt":"2018-10-17T05:05:41","slug":"robust-and-efficient-fuzzy-match-for-online-data-cleaning","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/robust-and-efficient-fuzzy-match-for-online-data-cleaning\/","title":{"rendered":"Robust and Efficient Fuzzy Match for Online Data Cleaning"},"content":{"rendered":"
To ensure high data quality, data warehouses must validate and cleanse incoming data tuples from external sources. In many situations, clean tuples must match acceptable tuples in reference tables. For example, product name and description fields in a sales record from a distributor must match the pre-recorded name and description fields in a product reference relation.<\/p>\n
A significant challenge in such a scenario is to implement an efficient and accurate fuzzy match operation that can effectively clean an incoming tuple if it fails to match exactly with any tuple in the reference relation. In this paper, we propose a new similarity function which overcomes limitations of commonly used similarity functions, and develop an efficient fuzzy match algorithm. We demonstrate the effectiveness of our techniques by evaluating them on real datasets.<\/p>\n","protected":false},"excerpt":{"rendered":"
To ensure high data quality, data warehouses must validate and cleanse incoming data tuples from external sources. In many situations, clean tuples must match acceptable tuples in reference tables. For example, product name and description fields in a sales record from a distributor must match the pre-recorded name and description fields in a product reference […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13561,13555],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-155253","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-algorithms","msr-research-area-search-information-retrieval","msr-locale-en_us"],"msr_publishername":"Association for Computing Machinery, Inc.","msr_edition":"","msr_affiliation":"","msr_published_date":"2003-01-01","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"227431","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","title":"bm_sigmod03.pdf","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2003\/01\/bm_sigmod03.pdf","id":227431,"label_id":0}],"msr_related_uploader":"","msr_attachments":[{"id":227431,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2003\/01\/bm_sigmod03.pdf"}],"msr-author-ordering":[{"type":"user_nicename","value":"surajitc","user_id":33764,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=surajitc"},{"type":"user_nicename","value":"krisgan","user_id":32579,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=krisgan"},{"type":"user_nicename","value":"vganti","user_id":34554,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=vganti"},{"type":"text","value":"Rajeev Motwani","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[957177],"msr_project":[169513],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":169513,"post_title":"Data Cleaning","post_name":"data-cleaning","post_type":"msr-project","post_date":"2002-07-01 16:21:12","post_modified":"2017-06-06 10:55:49","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/data-cleaning\/","post_excerpt":"Poor data quality is a well-known problem in data warehouses that arises for a variety of reasons such as data entry errors and differences in data representation among data sources. For example, one source may use abbreviated state names while another source may use fully expanded state names. However, high quality data is essential for accurate data analysis. Data cleaning is the process of detecting and correcting errors and inconsistencies in data. Goal Typical data…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/169513"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/155253","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":2,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/155253\/revisions"}],"predecessor-version":[{"id":542009,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/155253\/revisions\/542009"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=155253"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=155253"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=155253"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=155253"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=155253"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=155253"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=155253"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=155253"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=155253"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=155253"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=155253"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=155253"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=155253"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=155253"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=155253"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=155253"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}