{"id":155984,"date":"2008-05-01T00:00:00","date_gmt":"2008-05-01T00:00:00","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/msr-research-item\/agnostically-learning-decision-trees\/"},"modified":"2018-10-16T20:12:31","modified_gmt":"2018-10-17T03:12:31","slug":"agnostically-learning-decision-trees","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/agnostically-learning-decision-trees\/","title":{"rendered":"Agnostically Learning Decision Trees"},"content":{"rendered":"
We consider the problem of learning a decision tree in the presence of arbitrary noise. More formally, we are given black-box access (a type of active learning) to an arbitrary binary function on n bits, and our output is a function whose accuracy is almost as good as that of the best size-s decision tree, where accuracy is measured over the uniform distribution on inputs.<\/p>\n","protected":false},"excerpt":{"rendered":"
We consider the problem of learning a decision tree in the presence of arbitrary noise. More formally, we are given black-box access (a type of active learning) to an arbitrary binary function on n bits, and our output is a function whose accuracy is almost as good as that of the best size-s decision tree, […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13560],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-155984","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-programming-languages-software-engineering","msr-locale-en_us"],"msr_publishername":"ACM Press","msr_edition":"Proceedings of the thirty-ninth annual ACM symposium on Theory of computing (STOC), 2008","msr_affiliation":"","msr_published_date":"2008-05-17","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"527-536","msr_chapter":"","msr_isbn":"978-1-60558-047-0","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"327146","msr_publicationurl":"","msr_doi":"10.1145\/1374376.1374451","msr_publication_uploader":[{"type":"file","title":"2008-agnostically_learning_decision_trees","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2008\/05\/2008-Agnostically_Learning_Decision_Trees.pdf","id":327146,"label_id":0},{"type":"file","title":"2008-iit","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2008\/05\/2008-IIT.ppt","id":327149,"label_id":0},{"type":"doi","title":"10.1145\/1374376.1374451","viewUrl":false,"id":false,"label_id":0}],"msr_related_uploader":"","msr_attachments":[{"id":327149,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2008\/05\/2008-IIT.ppt"},{"id":327146,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2008\/05\/2008-Agnostically_Learning_Decision_Trees.pdf"}],"msr-author-ordering":[{"type":"user_nicename","value":"parik","user_id":33192,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=parik"},{"type":"user_nicename","value":"adum","user_id":30834,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=adum"},{"type":"text","value":"Adam R. Klivans","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[199563],"msr_event":[],"msr_group":[],"msr_project":[171268],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":171268,"post_title":"Learning Theory","post_name":"learning-theory","post_type":"msr-project","post_date":"2014-01-28 11:40:38","post_modified":"2017-06-19 11:53:07","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/learning-theory\/","post_excerpt":"We work on questions motivated by machine learning, in particular from the theoretical and computational perspectives. Our goals are to mathematically understand the effectiveness of existing learning algorithms and to design new learning algorithms. We combine expertise from diverse fields such as algorithms and complexity, statistics, and convex geometry. We are interested in a broad range of problems.\u00a0For example, we have studied the following problems. Can we rigorously prove the effectiveness of practical algorithms? For…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/171268"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/155984"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":2,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/155984\/revisions"}],"predecessor-version":[{"id":524430,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/155984\/revisions\/524430"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=155984"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=155984"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=155984"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=155984"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=155984"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=155984"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=155984"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=155984"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=155984"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=155984"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=155984"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=155984"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=155984"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=155984"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=155984"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=155984"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}