{"id":155990,"date":"2008-09-01T00:00:00","date_gmt":"2008-09-01T00:00:00","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/msr-research-item\/automatic-childrens-reading-tutor-on-hand-held-devices\/"},"modified":"2018-10-16T20:12:37","modified_gmt":"2018-10-17T03:12:37","slug":"automatic-childrens-reading-tutor-on-hand-held-devices","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/automatic-childrens-reading-tutor-on-hand-held-devices\/","title":{"rendered":"Automatic Children’s Reading Tutor on Hand-Held Devices"},"content":{"rendered":"

This paper presents an Automatic Reading Tutoring (ART) system using state-of-the-art speech recognition technologies aimed to improve children\u2019s oral reading ability. The features of this system include a compact and robust language model designed for detecting disfluencies in children\u2019s speech, low-footprint implementation, and built-in microphone array. Our system is targeting on hand-held devices to provide better accessibility, flexibility, and freedom for children\u2019s reading practice. The focus of this paper is on the current system\u2019s architecture, which has achieved real-time performance on two hand-held, small-form-factor devices (UMPC and Motion Tablet), with the same detection rate and false alarm rate as on desktop PCs. We also report the latest effort on a prototype system running on a PDA (Windows Mobile 6).<\/p>\n","protected":false},"excerpt":{"rendered":"

This paper presents an Automatic Reading Tutoring (ART) system using state-of-the-art speech recognition technologies aimed to improve children\u2019s oral reading ability. The features of this system include a compact and robust language model designed for detecting disfluencies in children\u2019s speech, low-footprint implementation, and built-in microphone array. Our system is targeting on hand-held devices to provide […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556,13545,13554],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-155990","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-research-area-human-language-technologies","msr-research-area-human-computer-interaction","msr-locale-en_us"],"msr_publishername":"International Speech Communication Association","msr_edition":"Proceedings of InterSpeech,2008, Proceedings of Interspeech","msr_affiliation":"","msr_published_date":"2008-09-01","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"1733-1736","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"Brisbane, Australia","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"224998","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","title":"Fianl_is08_inProceeding.pdf","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2008\/09\/Fianl_is08_inProceeding.pdf","id":224998,"label_id":0}],"msr_related_uploader":"","msr_attachments":[{"id":224998,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2008\/09\/Fianl_is08_inProceeding.pdf"}],"msr-author-ordering":[{"type":"user_nicename","value":"xiaolli","user_id":34889,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=xiaolli"},{"type":"user_nicename","value":"deng","user_id":31602,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=deng"},{"type":"user_nicename","value":"yuncj","user_id":35068,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=yuncj"},{"type":"user_nicename","value":"alexac","user_id":30932,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=alexac"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[],"msr_project":[169434,169630],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":169434,"post_title":"Acoustic Modeling","post_name":"acoustic-modeling","post_type":"msr-project","post_date":"2004-01-29 16:42:42","post_modified":"2019-08-14 14:50:04","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/acoustic-modeling\/","post_excerpt":"Acoustic modeling of speech typically refers to the process of\u00a0establishing statistical\u00a0representations for the feature vector sequences\u00a0computed from the speech waveform. Hidden Markov Model (HMM) is one most common type of acoustuc models. Other acosutic models include segmental models, super-segmental models (including hidden dynamic models), neural networks, maximum entropy models, and (hidden) conditional random fields, etc. Acoustic modeling also encompasses \"pronunciation modeling\", which describes how a sequence or multi-sequences of fundamental speech units\u00a0(such as phones or…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/169434"}]}},{"ID":169630,"post_title":"Language Modeling for Speech Recognition","post_name":"language-modeling-for-speech-recognition","post_type":"msr-project","post_date":"2004-01-29 16:43:32","post_modified":"2019-08-19 09:41:10","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/language-modeling-for-speech-recognition\/","post_excerpt":"Did I just say \"It's fun to recognize speech?\" or \"It's fun to wreck a nice beach?\" It's hard to tell because they sound about the same. Of course, it's a lot more likely that I would say \"recognize speech\" than \"wreck a nice beach.\" Language models help a speech recognizer figure out how likely a word sequence is, independent of the acoustics. This lets the recognizer make the right guess when two different sentences…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/169630"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/155990"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":2,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/155990\/revisions"}],"predecessor-version":[{"id":524465,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/155990\/revisions\/524465"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=155990"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=155990"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=155990"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=155990"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=155990"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=155990"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=155990"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=155990"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=155990"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=155990"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=155990"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=155990"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=155990"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=155990"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=155990"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=155990"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}