{"id":156166,"date":"2009-04-01T00:00:00","date_gmt":"2009-04-01T00:00:00","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/msr-research-item\/voice-search-of-structured-media-data\/"},"modified":"2018-10-16T20:16:20","modified_gmt":"2018-10-17T03:16:20","slug":"voice-search-of-structured-media-data","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/voice-search-of-structured-media-data\/","title":{"rendered":"Voice Search of Structured Media Data"},"content":{"rendered":"
\n

This paper addresses the problem of using unstructured queries to search a structured database in voice search applications. By incorporating structural information in music metadata, the end-to-end search error has been reduced by 15% on text queries and up to 11% on spoken queries. Based on that, an HMM sequential rescoring model has reduced the error rate by 28% on text queries and up to 23% on spoken queries compared to the baseline system. Furthermore, a phonetic similarity model has been introduced to compensate speech recognition errors, which has improved the end-to-end search accuracy consistently across different levels of speech recognition accuracy.<\/p>\n<\/div>\n

<\/p>\n","protected":false},"excerpt":{"rendered":"

This paper addresses the problem of using unstructured queries to search a structured database in voice search applications. By incorporating structural information in music metadata, the end-to-end search error has been reduced by 15% on text queries and up to 11% on spoken queries. Based on that, an HMM sequential rescoring model has reduced the […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13551,13552,13554],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-156166","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-graphics-and-multimedia","msr-research-area-hardware-devices","msr-research-area-human-computer-interaction","msr-locale-en_us"],"msr_publishername":"Institute of Electrical and Electornic Engineers, Inc.","msr_edition":"International Conference on Acoustics, Speech and Signal Processing","msr_affiliation":"","msr_published_date":"2009-04-01","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"224092","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","title":"icassp09-yeyiwang.pdf","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2009\/04\/icassp09-yeyiwang.pdf","id":224092,"label_id":0}],"msr_related_uploader":"","msr_attachments":[{"id":224092,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2009\/04\/icassp09-yeyiwang.pdf"}],"msr-author-ordering":[{"type":"text","value":"Young-In Song","user_id":0,"rest_url":false},{"type":"user_nicename","value":"yeyiwang","user_id":34993,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=yeyiwang"},{"type":"user_nicename","value":"yuncj","user_id":35068,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=yuncj"},{"type":"user_nicename","value":"mseltzer","user_id":33017,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=mseltzer"},{"type":"user_nicename","value":"ivantash","user_id":32127,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=ivantash"},{"type":"user_nicename","value":"alexac","user_id":30932,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=alexac"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[],"msr_project":[171313,171150,170147],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":171313,"post_title":"Dialog and Conversational Systems Research","post_name":"dialog-and-conversational-systems-research","post_type":"msr-project","post_date":"2014-03-14 09:46:35","post_modified":"2017-07-11 15:34:26","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/dialog-and-conversational-systems-research\/","post_excerpt":"Conversational systems interact with people through language to assist, enable, or entertain. Research at Microsoft spans dialogs that use language exclusively, or in conjunctions with additional modalities like gesture; where language is spoken or in text; and in a variety of settings, such as conversational systems in apps or devices, and situated interactions in the real world. Projects Spoken Language Understanding","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/171313"}]}},{"ID":171150,"post_title":"Spoken Language Understanding","post_name":"spoken-language-understanding","post_type":"msr-project","post_date":"2013-05-01 11:46:32","post_modified":"2019-08-19 14:48:51","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/spoken-language-understanding\/","post_excerpt":"Spoken language understanding (SLU) is an emerging field in between the areas of speech processing and natural language processing. The term spoken language understanding has largely been coined for targeted understanding of human speech directed at machines. This project covers our research on SLU tasks such as domain detection, intent determination, and slot filling, using data-driven methods. Projects Deeper Understanding: Moving\u00a0beyond shallow targeted understanding towards building domain independent SLU models. Scaling SLU: Quickly bootstrapping SLU…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/171150"}]}},{"ID":170147,"post_title":"Understand User's Intent from Speech and Text","post_name":"understand-users-intent-from-speech-and-text","post_type":"msr-project","post_date":"2008-12-17 11:20:26","post_modified":"2019-08-19 15:33:37","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/understand-users-intent-from-speech-and-text\/","post_excerpt":"Understanding what users like to do\/need to get is critical in human computer interaction. When natural user interface like speech or natural language is used in human-computer interaction, such as in a spoken dialogue system or with an internet search engine, language understanding becomes an important issue. Intent understanding is about identifying the action a user wants a computer to take or the information she\/he would like to obtain, conveyed in a spoken utterance or…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/170147"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/156166"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/156166\/revisions"}],"predecessor-version":[{"id":525581,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/156166\/revisions\/525581"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=156166"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=156166"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=156166"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=156166"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=156166"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=156166"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=156166"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=156166"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=156166"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=156166"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=156166"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=156166"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=156166"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=156166"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=156166"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=156166"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}