{"id":156801,"date":"2002-01-01T00:00:00","date_gmt":"2002-01-01T00:00:00","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/msr-research-item\/efficient-evaluation-of-queries-with-mining-predicates-2\/"},"modified":"2018-10-16T21:11:11","modified_gmt":"2018-10-17T04:11:11","slug":"efficient-evaluation-of-queries-with-mining-predicates-2","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/efficient-evaluation-of-queries-with-mining-predicates-2\/","title":{"rendered":"Efficient Evaluation of Queries with Mining Predicates"},"content":{"rendered":"
Modern relational database systems are beginning to support ad hoc queries on mining models. In this paper, we explore novel techniques for optimizing queries that apply mining models to relational data. For such queries, we use the internal structure of the mining model to automatically derive traditional database predicates. We present algorithms for deriving such predicates for some popular discrete mining models: decision trees, naive Bayes, and clustering. Our experiments on Microsoft SQL Server 2000 demonstrate that these derived predicates can signi\ufb01cantly reduce the cost of evaluating such queries.<\/p>\n","protected":false},"excerpt":{"rendered":"
Modern relational database systems are beginning to support ad hoc queries on mining models. In this paper, we explore novel techniques for optimizing queries that apply mining models to relational data. For such queries, we use the internal structure of the mining model to automatically derive traditional database predicates. We present algorithms for deriving such […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13555],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-156801","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-search-information-retrieval","msr-locale-en_us"],"msr_publishername":"IEEE Computer Society","msr_edition":"Proceedings of 18th International Conference on Data Engineering","msr_affiliation":"","msr_published_date":"2002-01-01","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"210588","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","title":"icde02-DM.pdf","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/icde02-DM.pdf","id":210588,"label_id":0}],"msr_related_uploader":"","msr_attachments":[{"id":210588,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/icde02-DM.pdf"}],"msr-author-ordering":[{"type":"user_nicename","value":"surajitc","user_id":33764,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=surajitc"},{"type":"text","value":"Sunita Sarawagi","user_id":0,"rest_url":false},{"type":"user_nicename","value":"viveknar","user_id":34602,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=viveknar"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[957177],"msr_project":[169515],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":169515,"post_title":"Data Mining","post_name":"data-mining","post_type":"msr-project","post_date":"2001-11-02 16:06:25","post_modified":"2017-06-06 10:59:39","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/data-mining\/","post_excerpt":"Goal The Knowledge Discovery and Data Mining (KDD) process consists of data selection, data cleaning, data transformation and reduction, mining, interpretation and evaluation, and finally incorporation of the mined \"knowledge\" with the larger decision making process. The goals of this research project include development of efficient computational approaches to data modeling (finding patterns), data cleaning, and data reduction of high-dimensional large databases. Methods from databases, statistics, algorithmic complexity, and optimization are used to build efficient…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/169515"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/156801"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":2,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/156801\/revisions"}],"predecessor-version":[{"id":533636,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/156801\/revisions\/533636"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=156801"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=156801"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=156801"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=156801"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=156801"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=156801"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=156801"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=156801"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=156801"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=156801"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=156801"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=156801"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=156801"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=156801"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=156801"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=156801"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}