{"id":157309,"date":"2009-05-01T00:00:00","date_gmt":"2009-05-01T00:00:00","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/msr-research-item\/differential-privacy-and-robust-statistics\/"},"modified":"2018-10-16T21:54:16","modified_gmt":"2018-10-17T04:54:16","slug":"differential-privacy-and-robust-statistics","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/differential-privacy-and-robust-statistics\/","title":{"rendered":"Differential Privacy and Robust Statistics"},"content":{"rendered":"
\n

We show by means of several examples that robust statistical estimators present an excellent starting point for differentially private estimators. Our algorithms use a new paradigm for differentially private mechanisms, which we call Propose-Test-Release (PTR), and for which we give a formal definition and general composition theorems.<\/p>\n<\/div>\n

<\/p>\n","protected":false},"excerpt":{"rendered":"

We show by means of several examples that robust statistical estimators present an excellent starting point for differentially private estimators. Our algorithms use a new paradigm for differentially private mechanisms, which we call Propose-Test-Release (PTR), and for which we give a formal definition and general composition theorems.<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13561,13558],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-157309","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-algorithms","msr-research-area-security-privacy-cryptography","msr-locale-en_us"],"msr_publishername":"Association for Computing Machinery, Inc.","msr_edition":"Proceedings of the 41th Annual ACM Symposium on Theory of Computing (STOC)","msr_affiliation":"","msr_published_date":"2009-05-01","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"Proceedings of the 41th Annual ACM Symposium on Theory of Computing (STOC)","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"224026","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","title":"dl09.pdf","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2009\/05\/dl09.pdf","id":224026,"label_id":0}],"msr_related_uploader":"","msr_attachments":[{"id":224026,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2009\/05\/dl09.pdf"}],"msr-author-ordering":[{"type":"user_nicename","value":"dwork","user_id":31702,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=dwork"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[],"msr_project":[171268,169518],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":171268,"post_title":"Learning Theory","post_name":"learning-theory","post_type":"msr-project","post_date":"2014-01-28 11:40:38","post_modified":"2017-06-19 11:53:07","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/learning-theory\/","post_excerpt":"We work on questions motivated by machine learning, in particular from the theoretical and computational perspectives. Our goals are to mathematically understand the effectiveness of existing learning algorithms and to design new learning algorithms. We combine expertise from diverse fields such as algorithms and complexity, statistics, and convex geometry. We are interested in a broad range of problems.\u00a0For example, we have studied the following problems. Can we rigorously prove the effectiveness of practical algorithms? For…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/171268"}]}},{"ID":169518,"post_title":"Database Privacy","post_name":"database-privacy","post_type":"msr-project","post_date":"2003-11-24 13:44:35","post_modified":"2020-03-12 16:39:21","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/database-privacy\/","post_excerpt":"Overview The problem of statistical disclosure control\u2014revealing accurate statistics about a population while preserving the privacy of individuals\u2014has a venerable history. An extensive literature spans multiple disciplines: statistics, theoretical computer science, security, and databases.\u00a0 Nevertheless, despite this extensive literature, \u00abprivacy breaches\u00bb are common, both in the literature and in practice, even when security and data integrity are not compromised. This project revisits private data analysis from the perspective of modern cryptography.\u00a0 We address many previous…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/169518"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/157309","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":2,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/157309\/revisions"}],"predecessor-version":[{"id":540127,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/157309\/revisions\/540127"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=157309"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=157309"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=157309"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=157309"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=157309"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=157309"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=157309"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=157309"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=157309"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=157309"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=157309"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=157309"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=157309"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=157309"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=157309"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=157309"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}