{"id":157437,"date":"2008-01-01T00:00:00","date_gmt":"2008-01-01T00:00:00","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/msr-research-item\/bayesian-color-constancy-revisited\/"},"modified":"2018-10-16T22:10:20","modified_gmt":"2018-10-17T05:10:20","slug":"bayesian-color-constancy-revisited","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/bayesian-color-constancy-revisited\/","title":{"rendered":"Bayesian Color Constancy Revisited"},"content":{"rendered":"
\n

Computational color constancy is the task of estimating the true re\ufb02ectances of visible surfaces in an image. In this paper we follow a line of research that assumes uniform illumination of a scene, and that the principal step in estimating re\ufb02ectances is the estimation of the scene illuminant. We review recent approaches to illuminant estimation, \ufb01rstly those based on formulae for normalisation of the re\ufb02ectance distribution in an image \u2014 so-called grey-world algorithms, and those based on a Bayesian formulation of image formation. In evaluating these previous approaches we introduce a new tool in the form of a database of 568 high-quality, indoor and outdoor images, accurately labelled with illuminant, and preserved in their raw form, free of correction or normalisation. This has enabled us to establish several properties experimentally. Firstly automatic selection of grey-world algorithms according to image properties is not nearly so effective as has been thought. Secondly, it is shown that Bayesian illuminant estimation is signi\ufb01cantly improved by the improved accuracy of priors for illuminant and re\ufb02ectance that are obtained from the new dataset.<\/p>\n<\/div>\n

<\/p>\n","protected":false},"excerpt":{"rendered":"

Computational color constancy is the task of estimating the true re\ufb02ectances of visible surfaces in an image. In this paper we follow a line of research that assumes uniform illumination of a scene, and that the principal step in estimating re\ufb02ectances is the estimation of the scene illuminant. We review recent approaches to illuminant estimation, […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556,13562],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-157437","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-research-area-computer-vision","msr-locale-en_us"],"msr_publishername":"","msr_edition":"CVPR","msr_affiliation":"","msr_published_date":"2008-01-01","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"225985","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","title":"CVPR08-ColorConst.pdf","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2008\/01\/CVPR08-ColorConst.pdf","id":225985,"label_id":0}],"msr_related_uploader":"","msr_attachments":[{"id":225985,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2008\/01\/CVPR08-ColorConst.pdf"}],"msr-author-ordering":[{"type":"text","value":"Peter Vincent Gehler","user_id":0,"rest_url":false},{"type":"user_nicename","value":"carrot","user_id":31338,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=carrot"},{"type":"user_nicename","value":"ablake","user_id":30797,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=ablake"},{"type":"user_nicename","value":"minka","user_id":32943,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=minka"},{"type":"user_nicename","value":"tsharp","user_id":34344,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=tsharp"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[],"msr_project":[],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/157437"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":2,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/157437\/revisions"}],"predecessor-version":[{"id":542651,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/157437\/revisions\/542651"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=157437"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=157437"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=157437"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=157437"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=157437"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=157437"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=157437"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=157437"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=157437"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=157437"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=157437"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=157437"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=157437"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=157437"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=157437"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=157437"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}