{"id":158371,"date":"1996-08-15T00:00:00","date_gmt":"1996-08-15T00:00:00","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/msr-research-item\/montgomery-multiplication-in-gf2k\/"},"modified":"2021-03-18T12:53:05","modified_gmt":"2021-03-18T19:53:05","slug":"montgomery-multiplication-in-gf2k","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/montgomery-multiplication-in-gf2k\/","title":{"rendered":"Montgomery Multiplication in GF(2 ^k)"},"content":{"rendered":"
We show that the multiplication operation c=a \u00b7 b \u00b7 r^-1 in the field GF(2^k<\/em>) can be implemented significantly faster in software than the standard multiplication, where r is a special fixed element of the field. This operation is the finite field analogue of the Montgomery multiplication for modular multiplication of integers. We give the bit-level and word-level algorithms for computing the product, perform a thorough performance analysis, and compare the algorithm to the standard multiplication algorithm in GF(2^k<\/em>). The Montgomery multiplication can be used to obtain fast software implementations of the discrete exponentiation operation, and is particularly suitable for cryptographic applications where k<\/em> is large.<\/p>\n","protected":false},"excerpt":{"rendered":" We show that the multiplication operation c=a \u00b7 b \u00b7 r^-1 in the field GF(2^k) can be implemented significantly faster in software than the standard multiplication, where r is a special fixed element of the field. This operation is the finite field analogue of the Montgomery multiplication for modular multiplication of integers. We give the […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13561,13558],"msr-publication-type":[193715],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[253996,253981,253990,253993,253984,253978,253987,251878,253975],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-158371","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-algorithms","msr-research-area-security-privacy-cryptography","msr-locale-en_us","msr-field-of-study-arithmetic","msr-field-of-study-binary-operation","msr-field-of-study-exponentiation","msr-field-of-study-finite-field","msr-field-of-study-gf2","msr-field-of-study-kochanski-multiplication","msr-field-of-study-modular-arithmetic","msr-field-of-study-multiplication","msr-field-of-study-multiplication-algorithm"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"1998-3-31","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"Designs, Codes and Cryptography","msr_volume":"14","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"1","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":0,"msr_main_download":"224272","msr_publicationurl":"http:\/\/cryptocode.net\/docs\/c14.pdf","msr_doi":"","msr_publication_uploader":[{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/1996\/08\/c12mmugf.pdf","label_id":"243132","label":0},{"type":"doi","viewUrl":"false","id":"false","title":"10.1023\/A:1008208521515","label_id":"243106","label":0}],"msr_related_uploader":"","msr_attachments":[{"id":0,"url":"http:\/\/cryptocode.net\/docs\/c14.pdf"}],"msr-author-ordering":[{"type":"text","value":"Cetin K. Koc","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Tolga Acar","user_id":34244,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Tolga Acar"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[],"msr_project":[],"publication":[],"video":[],"download":[],"msr_publication_type":"article","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/158371"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":4,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/158371\/revisions"}],"predecessor-version":[{"id":734866,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/158371\/revisions\/734866"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=158371"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=158371"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=158371"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=158371"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=158371"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=158371"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=158371"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=158371"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=158371"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=158371"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=158371"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=158371"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=158371"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=158371"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=158371"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=158371"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}