{"id":158860,"date":"2008-01-01T00:00:00","date_gmt":"2008-01-01T00:00:00","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/msr-research-item\/on-compressible-pairings-and-their-computation\/"},"modified":"2018-10-16T20:58:24","modified_gmt":"2018-10-17T03:58:24","slug":"on-compressible-pairings-and-their-computation","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/on-compressible-pairings-and-their-computation\/","title":{"rendered":"On compressible pairings and their computation"},"content":{"rendered":"
\n

In this paper we provide explicit formul\u00e6 to compute bilinear pairings in compressed form. We indicate families of curves where the proposed compressed computation method can be applied and where particularly generalized versions of the Eta and Ate pairings due to Zhao et al. are especially efficient. Our approach introduces more flexibility when trading off computation speed and memory requirement. Furthermore, compressed computation of reduced pairings can be done without any finite field inversions. We also give a performance evaluation and compare the new method with conventional pairing algorithms.<\/p>\n<\/div>\n

<\/p>\n","protected":false},"excerpt":{"rendered":"

In this paper we provide explicit formul\u00e6 to compute bilinear pairings in compressed form. We indicate families of curves where the proposed compressed computation method can be applied and where particularly generalized versions of the Eta and Ate pairings due to Zhao et al. are especially efficient. Our approach introduces more flexibility when trading off […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13561,13558],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-158860","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-algorithms","msr-research-area-security-privacy-cryptography","msr-locale-en_us"],"msr_publishername":"Springer","msr_edition":"Progress in Cryptology - AFRICACRYPT 2008","msr_affiliation":"","msr_published_date":"2008-01-01","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"Progress in Cryptology - AFRICACRYPT 2008","msr_pages_string":"371-388","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"5023","msr_number":"","msr_editors":"","msr_series":"Lecture Notes in Computer Science","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"208427","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","title":"ocpatc.pdf","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/ocpatc.pdf","id":208427,"label_id":0}],"msr_related_uploader":"","msr_attachments":[{"id":208427,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/ocpatc.pdf"}],"msr-author-ordering":[{"type":"user_nicename","value":"mnaehrig","user_id":32976,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=mnaehrig"},{"type":"text","value":"Paulo S. L. M. Barreto","user_id":0,"rest_url":false},{"type":"text","value":"Peter Schwabe","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[],"msr_project":[239792],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":239792,"post_title":"Elliptic Curve Cryptography (ECC)","post_name":"elliptic-curve-cryptography-ecc","post_type":"msr-project","post_date":"2016-06-29 20:49:17","post_modified":"2020-03-31 12:25:10","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/elliptic-curve-cryptography-ecc\/","post_excerpt":"In the last 25 years, Elliptic Curve Cryptography (ECC) has become a mainstream primitive for cryptographic protocols and applications. ECC has been standardized for use in key exchange and digital signatures. This project focuses on efficient generation of parameters and implementation of ECC and pairing-based crypto primitives, across architectures and platforms.","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/239792"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/158860","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/158860\/revisions"}],"predecessor-version":[{"id":409511,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/158860\/revisions\/409511"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=158860"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=158860"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=158860"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=158860"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=158860"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=158860"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=158860"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=158860"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=158860"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=158860"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=158860"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=158860"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=158860"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=158860"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=158860"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=158860"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}