{"id":159101,"date":"2010-05-25T00:00:00","date_gmt":"2010-05-25T00:00:00","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/msr-research-item\/an-interactive-voting-based-map-matching-algorithm\/"},"modified":"2018-10-16T21:28:13","modified_gmt":"2018-10-17T04:28:13","slug":"an-interactive-voting-based-map-matching-algorithm","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/an-interactive-voting-based-map-matching-algorithm\/","title":{"rendered":"An Interactive Voting-based Map Matching Algorithm"},"content":{"rendered":"
\n

Matching a raw GPS trajectory to roads on a digital map is often referred to as the Map Matching problem. However, the occurrence of the low-sampling-rate trajectories (e.g. one point per 2 minutes) has brought lots of challenges to existing map matching algorithms. To address this problem, we propose an Interactive Voting-based Map Matching (IVMM) algorithm based on the following three insights: 1) The position context of a GPS point as well as the topological information of road networks, 2) the mutual influence between GPS points (i.e., the matching result of a point references the positions of its neighbors; in turn, when matching its neighbors, the position of this point will also be referenced), and 3) the strength of the mutual influence weighted by the distance between GPS points (i.e., the farther distance is the weaker influence exists). In this approach, we do not only consider the spatial and temporal information of a GPS trajectory but also devise a voting-based strategy to model the weighted mutual influences between GPS points. We evaluate our IVMM algorithm based on a user-labeled real trajectory dataset. As a result, the IVMM algorithm outperforms the related method (ST-Matching algorithm).<\/p>\n<\/div>\n

<\/p>\n","protected":false},"excerpt":{"rendered":"

Matching a raw GPS trajectory to roads on a digital map is often referred to as the Map Matching problem. However, the occurrence of the low-sampling-rate trajectories (e.g. one point per 2 minutes) has brought lots of challenges to existing map matching algorithms. To address this problem, we propose an Interactive Voting-based Map Matching (IVMM) […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13561],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-159101","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-algorithms","msr-locale-en_us"],"msr_publishername":"","msr_edition":"Proceedings of the 11th International Conference on Mobile Data Management","msr_affiliation":"","msr_published_date":"2010-05-25","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"207125","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","title":"An%20Interactive%20Voting-based%20Map%20Matching%20Algorithm.pdf","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/An20Interactive20Voting-based20Map20Matching20Algorithm.pdf","id":207125,"label_id":0},{"type":"file","title":"An%20Interactive-Voting%20Based%20Map%20Matching%20Algorithm.pptx","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/An20Interactive-Voting20Based20Map20Matching20Algorithm.pptx","id":207124,"label_id":0}],"msr_related_uploader":"","msr_attachments":[{"id":207125,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/An20Interactive20Voting-based20Map20Matching20Algorithm.pdf"},{"id":207124,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/An20Interactive-Voting20Based20Map20Matching20Algorithm.pptx"}],"msr-author-ordering":[{"type":"user_nicename","value":"yuzheng","user_id":35088,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=yuzheng"},{"type":"user_nicename","value":"xingx","user_id":34906,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=xingx"},{"type":"text","value":"Chengyang Zhang","user_id":0,"rest_url":false},{"type":"text","value":"Guangzhong Sun","user_id":0,"rest_url":false},{"type":"text","value":"Jing Yuan","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[],"msr_project":[170845,170558,170824],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":170845,"post_title":"Computing with Spatial Trajectories","post_name":"computing-with-spatial-trajectories","post_type":"msr-project","post_date":"2011-11-08 23:36:50","post_modified":"2017-06-06 09:31:37","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/computing-with-spatial-trajectories\/","post_excerpt":"Editor: Yu Zheng,\u00a0Xiaofang Zhou Foreword by Jiawei Han Editorial board: Ralf Hartmut G\u00fcting, Hans-Peter Kriegel, Hanan Samet [Order it on Amazon] [Buy it from Springer] [Preview this book (Outline and Preface)]   With the rapid development of wireless communication and mobile computing technologies and global positioning and navigational systems, spatial trajectory data has been mounting up, calling for systematic research and development of new computing technologies for storage, preprocessing, retrieving, and mining of trajectory data…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/170845"}]}},{"ID":170558,"post_title":"T-Drive: Driving Directions based on Taxi Traces","post_name":"t-drive-driving-directions-based-on-taxi-traces","post_type":"msr-project","post_date":"2010-09-16 23:38:30","post_modified":"2017-06-19 13:28:23","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/t-drive-driving-directions-based-on-taxi-traces\/","post_excerpt":"T-drive is a smart driving direction services based on GPS trajectories of a large number of taxis. It helps user find out the practically fastest path to a destination at a given departure time. A\u00a0prototype has been built based on a\u00a0real-world trajectory dataset generated by 30,000 taxis in Beijing in\u00a0a period of 3 monthes. The service is available (within Microsoft corpnet), which\u00a0provides\u00a0a user\u00a0with the practically fastest path with less online computation and according to your…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/170558"}]}},{"ID":170824,"post_title":"Urban Computing","post_name":"urban-computing","post_type":"msr-project","post_date":"2016-07-03 10:26:01","post_modified":"2018-04-07 17:32:40","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/urban-computing\/","post_excerpt":"Concept\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 (\u4e2d\u6587\u4e3b\u9875) Urban computing is a process of acquisition, integration, and analysis of big and heterogeneous data generated by a diversity of sources in urban spaces, such as sensors, devices, vehicles, buildings, and human, to tackle the major issues that cities face, e.g. air pollution, increased energy consumption and traffic congestion. Urban computing connects unobtrusive and ubiquitous sensing technologies, advanced data management and analytics models, and novel visualization methods, to create win-win-win solutions that improve…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/170824"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/159101"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/159101\/revisions"}],"predecessor-version":[{"id":432831,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/159101\/revisions\/432831"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=159101"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=159101"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=159101"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=159101"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=159101"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=159101"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=159101"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=159101"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=159101"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=159101"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=159101"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=159101"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=159101"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=159101"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=159101"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=159101"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}