{"id":159394,"date":"2010-06-21T00:00:00","date_gmt":"2010-06-21T00:00:00","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/msr-research-item\/learning-optimally-diverse-rankings-over-large-document-collections\/"},"modified":"2018-10-16T21:55:13","modified_gmt":"2018-10-17T04:55:13","slug":"learning-optimally-diverse-rankings-over-large-document-collections","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/learning-optimally-diverse-rankings-over-large-document-collections\/","title":{"rendered":"Learning optimally diverse rankings over large document collections"},"content":{"rendered":"
Most learning to rank research has assumed that the utility of presenting different documents to users is independent, producing learned ranking functions that often return redundant results. The few approaches that avoid this repetition have rather unsatisfyingly lacked theoretical foundations, or do not scale. We present a learning-to-rank formulation that optimizes the fraction of satisfied users, with a scalable algorithm that also explicitly takes document similarity and ranking context into account. We present theoretical justifications for this approach as well as a near-optimal algorithm. Our evaluation adds optimizations that improve empirical performance, and shows that our algorithms learn orders of magnitude more quickly than the previous approaches.<\/p>\n<\/div>\n
<\/p>\n","protected":false},"excerpt":{"rendered":"
Most learning to rank research has assumed that the utility of presenting different documents to users is independent, producing learned ranking functions that often return redundant results. The few approaches that avoid this repetition have rather unsatisfyingly lacked theoretical foundations, or do not scale. We present a learning-to-rank formulation that optimizes the fraction of satisfied […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13561,13556,13555],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-159394","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-algorithms","msr-research-area-artificial-intelligence","msr-research-area-search-information-retrieval","msr-locale-en_us"],"msr_publishername":"","msr_edition":"Proc. of the 27th International Conference on Machine Learning (ICML 2010)","msr_affiliation":"","msr_published_date":"2010-06-21","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"Proc. of the 27th International Conference on Machine Learning (ICML 2010)","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"Full version can be found at arxiv.org (http:\/\/arxiv.org\/abs\/1005.5197).","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"221398","msr_publicationurl":"http:\/\/arxiv.org\/abs\/1005.5197","msr_doi":"","msr_publication_uploader":[{"type":"file","title":"OptimallyDiverseRankings.pdf","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2010\/06\/OptimallyDiverseRankings.pdf","id":221398,"label_id":0},{"type":"url","title":"http:\/\/arxiv.org\/abs\/1005.5197","viewUrl":false,"id":false,"label_id":0}],"msr_related_uploader":"","msr_attachments":[{"id":0,"url":"http:\/\/arxiv.org\/abs\/1005.5197"},{"id":221398,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2010\/06\/OptimallyDiverseRankings.pdf"}],"msr-author-ordering":[{"type":"user_nicename","value":"slivkins","user_id":33685,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=slivkins"},{"type":"user_nicename","value":"filiprad","user_id":31812,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=filiprad"},{"type":"user_nicename","value":"sreenig","user_id":33705,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=sreenig"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[144902],"msr_project":[171233,170006],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":171233,"post_title":"Explore-Exploit Learning @MSR-NYC","post_name":"explore-exploit-learning","post_type":"msr-project","post_date":"2013-10-24 16:52:27","post_modified":"2017-08-10 13:39:37","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/explore-exploit-learning\/","post_excerpt":"This is an umbrella project for machine learning with explore-exploit tradeoff: the trade-off between acquiring and using information. This is a mature, yet very active, research area studied in Machine Learning, Theoretical Computer Science, Operations Research, and Economics. Much of our activity focuses on \"multi-armed bandits\" and \"contextual bandits\", relatively simple and yet very powerful models for explore-exploit tradeoff. We are located in (or heavily collaborating with)\u00a0Microsoft Research New York City. Most of us are…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/171233"}]}},{"ID":170006,"post_title":"Multi-Armed Bandits","post_name":"multi-armed-bandits","post_type":"msr-project","post_date":"2008-11-23 19:01:32","post_modified":"2021-11-11 17:24:18","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/multi-armed-bandits\/","post_excerpt":"This is an umbrella project for several related efforts at Microsoft Research Silicon Valley that address various Multi-Armed Bandit (MAB) formulations motivated by web search and ad placement. The MAB problem is a classical paradigm in Machine Learning in which an online algorithm chooses from a set of strategies in a sequence of trials so as to maximize the total payoff of the chosen strategies. This page is inactive since the closure of MSR-SVC in…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/170006"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/159394","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":2,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/159394\/revisions"}],"predecessor-version":[{"id":540272,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/159394\/revisions\/540272"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=159394"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=159394"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=159394"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=159394"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=159394"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=159394"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=159394"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=159394"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=159394"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=159394"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=159394"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=159394"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=159394"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=159394"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=159394"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=159394"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}