{"id":159818,"date":"2010-07-01T00:00:00","date_gmt":"2010-07-01T00:00:00","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/msr-research-item\/image-deblurring-using-inertial-measurement-sensors\/"},"modified":"2020-09-25T17:48:14","modified_gmt":"2020-09-26T00:48:14","slug":"image-deblurring-using-inertial-measurement-sensors","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/image-deblurring-using-inertial-measurement-sensors\/","title":{"rendered":"Image Deblurring using Inertial Measurement Sensors"},"content":{"rendered":"
We present a deblurring algorithm that uses a hardware attachment coupled with a natural image prior to deblur images from consumer cameras. Our approach uses a combination of inexpensive gyroscopes and accelerometers in an energy optimization framework to estimate a blur function from the camera\u2019s acceleration and angular velocity during an exposure. We solve for the camera motion at a high sampling rate during an exposure and infer the latent image using a joint optimization. Our method is completely automatic, handles per-pixel, spatially-varying blur, and out-performs the current leading image-based methods. Our experiments show that it handles large kernels \u2013 up to at least 100 pixels, with a typical size of 30 pixels. We also present a method to perform \u201cground-truth\u201d measurements of camera motion blur. We use this method to validate our hardware and deconvolution approach. To the best of our knowledge, this is the first work that uses 6 DOF inertial sensors for dense, per-pixel spatially-varying image deblurring and the first work to gather dense ground-truth measurements for camera-shake blur.<\/p>\n<\/div>\n
<\/p>\n","protected":false},"excerpt":{"rendered":"
We present a deblurring algorithm that uses a hardware attachment coupled with a natural image prior to deblur images from consumer cameras. Our approach uses a combination of inexpensive gyroscopes and accelerometers in an energy optimization framework to estimate a blur function from the camera\u2019s acceleration and angular velocity during an exposure. We solve for […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13562,13551],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-159818","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-computer-vision","msr-research-area-graphics-and-multimedia","msr-locale-en_us"],"msr_publishername":"ACM","msr_edition":"","msr_affiliation":"","msr_published_date":"2010-7-26","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"207044","msr_publicationurl":"http:\/\/dl.acm.org\/citation.cfm?id=1778767","msr_doi":"","msr_publication_uploader":[{"type":"file","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/imu_deblurring.pdf","id":"207044","title":"imu_deblurring.pdf","label_id":"243109","label":0},{"type":"url","viewUrl":"false","id":"false","title":"http:\/\/dl.acm.org\/citation.cfm?id=1778767","label_id":"243109","label":0},{"type":"doi","viewUrl":"false","id":"false","title":"10.1145\/1833349.1778767","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[{"id":0,"url":"http:\/\/dl.acm.org\/citation.cfm?id=1778767"},{"id":207044,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/imu_deblurring.pdf"}],"msr-author-ordering":[{"type":"user_nicename","value":"Neel Joshi","user_id":33073,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Neel Joshi"},{"type":"user_nicename","value":"Sing Bing Kang","user_id":33542,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Sing Bing Kang"},{"type":"user_nicename","value":"Larry Zitnick","user_id":32622,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Larry Zitnick"},{"type":"user_nicename","value":"Rick Szeliski","user_id":33781,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Rick Szeliski"}],"msr_impact_theme":[],"msr_research_lab":[199565],"msr_event":[],"msr_group":[694407],"msr_project":[],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/159818"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/159818\/revisions"}],"predecessor-version":[{"id":516548,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/159818\/revisions\/516548"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=159818"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=159818"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=159818"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=159818"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=159818"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=159818"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=159818"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=159818"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=159818"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=159818"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=159818"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=159818"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=159818"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=159818"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=159818"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=159818"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}