Technical Report MSR-TR-2011-18<\/a>, Microsoft Research, July 2011.<\/p>\n<\/div>\n<\/p>\n","protected":false},"excerpt":{"rendered":"
The Bayesian approach to machine learning amounts to inferring posterior distributions of random variables from a probabilistic model of how the variables are related (that is, a prior distribution) and a set of observations of variables. There is a trend in machine learning towards expressing Bayesian models as probabilistic programs. As a foundation for this […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13561,13560],"msr-publication-type":[193718],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-159909","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-algorithms","msr-research-area-programming-languages-software-engineering","msr-locale-en_us"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2011-3-26","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"MSR-TR-2011-18","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"Microsoft","msr_how_published":"","msr_notes":"European Symposium on Programming ESOP 2011","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"323285","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2011\/07\/measure-transformer-semantics.ESOP11.pdf","id":"323285","title":"Measure Transformer Semantics for Bayesian Machine Learning","label_id":"243109","label":0},{"type":"doi","viewUrl":"false","id":"false","title":"10.1007\/978-3-642-19718-5_5","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"user_nicename","value":"Johannes Borgstr\u00f6m","user_id":32350,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Johannes Borgstr\u00f6m"},{"type":"user_nicename","value":"Andy Gordon","user_id":30825,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Andy Gordon"},{"type":"text","value":"Michael Greenberg","user_id":0,"rest_url":false},{"type":"user_nicename","value":"James Margetson","user_id":32152,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=James Margetson"},{"type":"text","value":"Jurgen Van Gael","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[199561],"msr_event":[],"msr_group":[],"msr_project":[170935],"publication":[],"video":[],"download":[],"msr_publication_type":"techreport","related_content":{"projects":[{"ID":170935,"post_title":"Infer.NET Fun","post_name":"infer-net-fun","post_type":"msr-project","post_date":"2012-04-02 08:16:07","post_modified":"2017-06-16 09:44:24","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/infer-net-fun\/","post_excerpt":"\"I think it's extraordinarily important that we in computer science keep fun in computing.\" Alan J. Perlis - ACM Turing Award Winner 1966. Infer.NET Fun turns the simple succinct syntax of F# into an executable modeling language for Bayesian machine learning. We propose a marriage of probabilistic functional programming with Bayesian reasoning. Infer.NET Fun turns F# into a probabilistic\u00a0modeling language \u2013 you can code up the conditional probability distributions of Bayes\u2019 rule using F# array…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/170935"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/159909","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":2,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/159909\/revisions"}],"predecessor-version":[{"id":522169,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/159909\/revisions\/522169"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=159909"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=159909"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=159909"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=159909"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=159909"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=159909"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=159909"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=159909"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=159909"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=159909"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=159909"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=159909"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=159909"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=159909"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=159909"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=159909"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}