{"id":159909,"date":"2011-07-01T00:00:00","date_gmt":"2011-07-01T00:00:00","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/msr-research-item\/measure-transformer-semantics-for-bayesian-machine-learning\/"},"modified":"2019-08-23T07:52:57","modified_gmt":"2019-08-23T14:52:57","slug":"measure-transformer-semantics-for-bayesian-machine-learning-2011","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/measure-transformer-semantics-for-bayesian-machine-learning-2011\/","title":{"rendered":"Measure Transformer Semantics for Bayesian Machine Learning"},"content":{"rendered":"
\n

The Bayesian approach to machine learning amounts to inferring posterior distributions of random variables from a probabilistic model of how the variables are related (that is, a prior distribution) and a set of observations of variables. There is a trend in machine learning towards expressing Bayesian models as probabilistic programs. As a foundation for this kind of programming, we propose a core functional calculus with primitives for sampling prior distributions and observing variables. We define combinators for measure transformers, based on theorems in measure theory, and use these to give a rigorous semantics to our core calculus. The original features of our semantics include its support for discrete, continuous, and hybrid measures, and, in particular, for observations of zero-probability events. We compile our core language to a small imperative language that has a straightforward semantics via factor graphs, data structures that enable many efficient inference algorithms. We use an existing inference engine for efficient approximate inference of posterior marginal distributions, treating thousands of observations per second for large instances of realistic models.<\/p>\n


\n

An extended version appears as Technical Report MSR-TR-2011-18<\/a>, Microsoft Research, July 2011.<\/p>\n<\/div>\n

<\/p>\n","protected":false},"excerpt":{"rendered":"

The Bayesian approach to machine learning amounts to inferring posterior distributions of random variables from a probabilistic model of how the variables are related (that is, a prior distribution) and a set of observations of variables. There is a trend in machine learning towards expressing Bayesian models as probabilistic programs. As a foundation for this […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13561,13560],"msr-publication-type":[193718],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-159909","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-algorithms","msr-research-area-programming-languages-software-engineering","msr-locale-en_us"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2011-3-26","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"MSR-TR-2011-18","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"Microsoft","msr_how_published":"","msr_notes":"European Symposium on Programming ESOP 2011","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"323285","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2011\/07\/measure-transformer-semantics.ESOP11.pdf","id":"323285","title":"Measure Transformer Semantics for Bayesian Machine Learning","label_id":"243109","label":0},{"type":"doi","viewUrl":"false","id":"false","title":"10.1007\/978-3-642-19718-5_5","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"user_nicename","value":"Johannes Borgstr\u00f6m","user_id":32350,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Johannes Borgstr\u00f6m"},{"type":"user_nicename","value":"Andy Gordon","user_id":30825,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Andy Gordon"},{"type":"text","value":"Michael Greenberg","user_id":0,"rest_url":false},{"type":"user_nicename","value":"James Margetson","user_id":32152,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=James Margetson"},{"type":"text","value":"Jurgen Van Gael","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[199561],"msr_event":[],"msr_group":[],"msr_project":[170935],"publication":[],"video":[],"download":[],"msr_publication_type":"techreport","related_content":{"projects":[{"ID":170935,"post_title":"Infer.NET Fun","post_name":"infer-net-fun","post_type":"msr-project","post_date":"2012-04-02 08:16:07","post_modified":"2017-06-16 09:44:24","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/infer-net-fun\/","post_excerpt":"\"I think it's extraordinarily important that we in computer science keep fun in computing.\" Alan J. Perlis - ACM Turing Award Winner 1966. Infer.NET Fun turns the simple succinct syntax of F# into an executable modeling language for Bayesian machine learning. We propose a marriage of probabilistic functional programming with Bayesian reasoning. Infer.NET Fun turns F# into a probabilistic\u00a0modeling language \u2013 you can code up the conditional probability distributions of Bayes\u2019 rule using F# array…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/170935"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/159909","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":2,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/159909\/revisions"}],"predecessor-version":[{"id":522169,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/159909\/revisions\/522169"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=159909"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=159909"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=159909"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=159909"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=159909"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=159909"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=159909"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=159909"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=159909"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=159909"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=159909"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=159909"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=159909"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=159909"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=159909"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=159909"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}