{"id":160091,"date":"2010-12-06T00:00:00","date_gmt":"2010-12-06T00:00:00","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/msr-research-item\/b-bit-minwise-hashing-for-estimating-three-way-similarities\/"},"modified":"2018-10-16T20:08:20","modified_gmt":"2018-10-17T03:08:20","slug":"b-bit-minwise-hashing-for-estimating-three-way-similarities","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/b-bit-minwise-hashing-for-estimating-three-way-similarities\/","title":{"rendered":"b-Bit Minwise Hashing for Estimating Three-Way Similarities"},"content":{"rendered":"
\n

Computing two-way and multi-way set similarities is a fundamental problem. This study focuses on estimating 3-way resemblance (Jaccard similarity) using b-bit minwise hashing. While traditional minwise hashing methods store each hashed value using 64 bits, b-bit minwise hashing only stores the lowest b bits (where b <= 2 for 3-way). The extension to 3-way similarity from the prior work on 2-way similarity is technically non-trivial. We develop the precise estimator which is accurate and very complicated; and we recommend a much simplified estimator suitable for sparse data. Our analysis shows that b-bit minwise hashing can normally achieve a 10 to 25-fold improvement in the storage space required for a given estimator accuracy of the 3-way resemblance.<\/p>\n<\/div>\n

<\/p>\n","protected":false},"excerpt":{"rendered":"

Computing two-way and multi-way set similarities is a fundamental problem. This study focuses on estimating 3-way resemblance (Jaccard similarity) using b-bit minwise hashing. While traditional minwise hashing methods store each hashed value using 64 bits, b-bit minwise hashing only stores the lowest b bits (where b<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13555],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-160091","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-search-information-retrieval","msr-locale-en_us"],"msr_publishername":"","msr_edition":"Twenty-Fourth Annual Conference on Neural Information Processing Systems (NIPS)","msr_affiliation":"","msr_published_date":"2010-12-06","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"206841","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","title":"NIPS10_hashing.pdf","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/NIPS10_hashing.pdf","id":206841,"label_id":0}],"msr_related_uploader":"","msr_attachments":[{"id":206841,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/NIPS10_hashing.pdf"}],"msr-author-ordering":[{"type":"text","value":"Ping Li","user_id":0,"rest_url":false},{"type":"user_nicename","value":"chrisko","user_id":31427,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=chrisko"},{"type":"text","value":"Wenhao Gui","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[957177],"msr_project":[169514],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":169514,"post_title":"Data Exploration","post_name":"data-exploration","post_type":"msr-project","post_date":"2004-06-08 15:56:40","post_modified":"2017-06-06 10:57:58","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/data-exploration\/","post_excerpt":"This is a project area rather than a specific project. This project area focuses on novel ways to query, browse, extract, explore, mine and manage various kinds of data residing within the enterprise and on the web: structured data in relational databases, tabular data embedded in web pages, enterprise documents and spreadsheets as well as unstructured data in query logs, text documents and social media. Our research is relevant to both enterprise and consumer scenarios…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/169514"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/160091","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/160091\/revisions"}],"predecessor-version":[{"id":523178,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/160091\/revisions\/523178"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=160091"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=160091"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=160091"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=160091"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=160091"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=160091"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=160091"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=160091"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=160091"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=160091"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=160091"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=160091"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=160091"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=160091"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=160091"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=160091"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}