{"id":160276,"date":"2010-12-14T00:00:00","date_gmt":"2010-12-14T00:00:00","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/msr-research-item\/learning-a-bi-stochastic-data-similarity-matrix\/"},"modified":"2018-10-16T20:14:37","modified_gmt":"2018-10-17T03:14:37","slug":"learning-a-bi-stochastic-data-similarity-matrix","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/learning-a-bi-stochastic-data-similarity-matrix\/","title":{"rendered":"Learning a Bi-Stochastic Data Similarity Matrix"},"content":{"rendered":"
\n

An idealized clustering algorithm seeks to learn a cluster-adjacency matrix such that, if two data points belong to the same cluster, the corresponding entry would be 1; otherwise the entry would be 0. This integer (1\/0) constraint makes it difficult to find the optimal solution. We propose a relaxation on the cluster-adjacency matrix, by deriving a bi-stochastic matrix from a data similarity (e.g., kernel) matrix according to the Bregman divergence. Our general method is named the Bregmanian Bi-Stochastication (BBS) algorithm.<\/p>\n

We focus on two popular choices of the Bregman divergence: the Euclidian distance and he KL divergence. Interestingly, the BBS algorithm using the KL divergence is equivalent to the Sinkhorn-Knopp (SK) algorithm for deriving bi-stochastic matrices. We show that the BBS algorithm using the Euclidian distance is closely related to the relaxed k-means clustering and can often produce noticeably superior clustering results than the SK algorithm (and other algorithms such as Normalized Cut), through extensive experiments on public data sets.<\/p>\n<\/div>\n

<\/p>\n","protected":false},"excerpt":{"rendered":"

An idealized clustering algorithm seeks to learn a cluster-adjacency matrix such that, if two data points belong to the same cluster, the corresponding entry would be 1; otherwise the entry would be 0. This integer (1\/0) constraint makes it difficult to find the optimal solution. We propose a relaxation on the cluster-adjacency matrix, by deriving […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556,13555],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-160276","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-research-area-search-information-retrieval","msr-locale-en_us"],"msr_publishername":"IEEE","msr_edition":"The 10th International Conference on Data Mining (ICDM)","msr_affiliation":"","msr_published_date":"2010-12-14","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"206839","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","title":"PID1516079.pdf","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/PID1516079.pdf","id":206839,"label_id":0}],"msr_related_uploader":"","msr_attachments":[{"id":206839,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/PID1516079.pdf"}],"msr-author-ordering":[{"type":"text","value":"Fei Wang","user_id":0,"rest_url":false},{"type":"text","value":"Ping Li","user_id":0,"rest_url":false},{"type":"user_nicename","value":"chrisko","user_id":31427,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=chrisko"},{"type":"text","value":"Arnd Christian K\u00f6nig","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[957177],"msr_project":[169514],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":169514,"post_title":"Data Exploration","post_name":"data-exploration","post_type":"msr-project","post_date":"2004-06-08 15:56:40","post_modified":"2017-06-06 10:57:58","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/data-exploration\/","post_excerpt":"This is a project area rather than a specific project. This project area focuses on novel ways to query, browse, extract, explore, mine and manage various kinds of data residing within the enterprise and on the web: structured data in relational databases, tabular data embedded in web pages, enterprise documents and spreadsheets as well as unstructured data in query logs, text documents and social media. Our research is relevant to both enterprise and consumer scenarios…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/169514"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/160276","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/160276\/revisions"}],"predecessor-version":[{"id":525060,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/160276\/revisions\/525060"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=160276"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=160276"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=160276"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=160276"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=160276"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=160276"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=160276"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=160276"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=160276"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=160276"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=160276"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=160276"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=160276"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=160276"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=160276"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=160276"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}