{"id":160439,"date":"2010-01-01T00:00:00","date_gmt":"2010-01-01T00:00:00","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/msr-research-item\/ranking-with-query-dependent-loss-for-web-search\/"},"modified":"2018-10-16T20:17:59","modified_gmt":"2018-10-17T03:17:59","slug":"ranking-with-query-dependent-loss-for-web-search","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/ranking-with-query-dependent-loss-for-web-search\/","title":{"rendered":"Ranking with query-dependent loss for web search"},"content":{"rendered":"
Queries describe the users’ search intent and therefore they play an essential role in the context of ranking for information retrieval and Web search. However, most of existing approaches for ranking do not explicitly take into consideration the fact that queries vary significantly along several dimensions and entail different treatments regarding the ranking models. In this paper, we propose to incorporate query difference into ranking by introducing query-dependent loss functions. In the context of Web search, query difference is usually represented as different query categories; and, queries are usually classified according to search intent such as navigational, informational and transactional queries. Based on the observation that such kind of query categorization has high correlation with the user’s different expectation on the result accuracy on different rank positions, we develop position-sensitive query-dependent loss functions exploring such kind of query categorization. Beyond the simple learning method that builds ranking functions with pre-defined query categorization, we further propose a new method that learns both ranking functions and query categorization simultaneously. We apply the query-dependent loss functions to two particular ranking algorithms, RankNet and ListMLE. Experimental results demonstrate that query-dependent loss functions can be exploited to significantly improve the accuracy of learned ranking functions. We also show that the ranking function jointly learned with query categorization can achieve better performance than that learned with pre-defined query categorization. Finally, we provide analysis and conduct additional experiments to gain deeper understanding on the advantages of ranking with query-dependent loss functions over other query-dependent ranking approaches and query-independent approaches.<\/p>\n","protected":false},"excerpt":{"rendered":"
Queries describe the users’ search intent and therefore they play an essential role in the context of ranking for information retrieval and Web search. However, most of existing approaches for ranking do not explicitly take into consideration the fact that queries vary significantly along several dimensions and entail different treatments regarding the ranking models. In […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-160439","msr-research-item","type-msr-research-item","status-publish","hentry","msr-locale-en_us"],"msr_publishername":"ACM","msr_edition":"WSDM '10: Proceedings of the third ACM international conference on Web search and data mining","msr_affiliation":"","msr_published_date":"2010-02-04","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"WSDM '10: Proceedings of the third ACM international conference on Web search and data mining","msr_pages_string":"141\u2013150","msr_chapter":"","msr_isbn":"978-1-60558-889-6","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"http:\/\/doi.acm.org\/10.1145\/1718487.1718506","msr_doi":"","msr_publication_uploader":[{"type":"url","title":"http:\/\/doi.acm.org\/10.1145\/1718487.1718506","viewUrl":false,"id":false,"label_id":0}],"msr_related_uploader":"","msr_attachments":[{"id":0,"url":"http:\/\/doi.acm.org\/10.1145\/1718487.1718506"}],"msr-author-ordering":[{"type":"user_nicename","value":"tyliu","user_id":34431,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=tyliu"},{"type":"user_nicename","value":"taoqin","user_id":33871,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=taoqin"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[],"msr_project":[],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/160439"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":2,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/160439\/revisions"}],"predecessor-version":[{"id":526143,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/160439\/revisions\/526143"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=160439"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=160439"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=160439"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=160439"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=160439"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=160439"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=160439"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=160439"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=160439"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=160439"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=160439"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=160439"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=160439"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=160439"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=160439"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=160439"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}