{"id":160448,"date":"2007-01-01T00:00:00","date_gmt":"2007-01-01T00:00:00","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/msr-research-item\/ranking-with-multiple-hyperplanes\/"},"modified":"2018-10-16T20:18:26","modified_gmt":"2018-10-17T03:18:26","slug":"ranking-with-multiple-hyperplanes","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/ranking-with-multiple-hyperplanes\/","title":{"rendered":"Ranking with multiple hyperplanes"},"content":{"rendered":"

The central problem for many applications in Information Retrieval is ranking and learning to rank is considered as a promising approach for addressing the issue. Ranking SVM, for example, is a state-of-the-art method for learning to rank and has been empirically demonstrated to be effective. In this paper, we study the issue of learning to rank, particularly the approach of using SVM techniques to perform the task. We point out that although Ranking SVM is advantageous, it still has shortcomings. Ranking SVM employs a single hyperplane in the feature space as the model for ranking, which is too simple to tackle complex ranking problems. Furthermore, the training of Ranking SVM is also computationally costly. In this paper, we look at an alternative approach to Ranking SVM, which we call “Multiple Hyperplane Ranker” (MHR), and make comparisons between the two approaches. MHR takes the divide-and-conquer strategy. It employs multiple hyperplanes to rank instances and finally aggregates the ranking results given by the hyperplanes. MHR contains Ranking SVM as a special case, and MHR can overcome the shortcomings which Ranking SVM suffers from. Experimental results on two information retrieval datasets show that MHR can outperform Ranking SVM in ranking.<\/p>\n","protected":false},"excerpt":{"rendered":"

The central problem for many applications in Information Retrieval is ranking and learning to rank is considered as a promising approach for addressing the issue. Ranking SVM, for example, is a state-of-the-art method for learning to rank and has been empirically demonstrated to be effective. In this paper, we study the issue of learning to […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-160448","msr-research-item","type-msr-research-item","status-publish","hentry","msr-locale-en_us"],"msr_publishername":"ACM","msr_edition":"SIGIR '07: Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval","msr_affiliation":"","msr_published_date":"2007-07-23","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"279\u2013286","msr_chapter":"","msr_isbn":"978-1-59593-597-7","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"http:\/\/doi.acm.org\/10.1145\/1277741.1277791","msr_doi":"","msr_publication_uploader":[{"type":"url","title":"http:\/\/doi.acm.org\/10.1145\/1277741.1277791","viewUrl":false,"id":false,"label_id":0}],"msr_related_uploader":"","msr_attachments":[{"id":0,"url":"http:\/\/doi.acm.org\/10.1145\/1277741.1277791"}],"msr-author-ordering":[{"type":"user_nicename","value":"taoqin","user_id":33871,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=taoqin"},{"type":"user_nicename","value":"tyliu","user_id":34431,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=tyliu"},{"type":"user_nicename","value":"weilai","user_id":34800,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=weilai"},{"type":"user_nicename","value":"hangli","user_id":31961,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=hangli"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[],"msr_project":[],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/160448"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":2,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/160448\/revisions"}],"predecessor-version":[{"id":526263,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/160448\/revisions\/526263"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=160448"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=160448"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=160448"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=160448"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=160448"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=160448"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=160448"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=160448"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=160448"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=160448"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=160448"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=160448"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=160448"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=160448"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=160448"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=160448"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}