{"id":160923,"date":"2011-01-01T00:00:00","date_gmt":"2011-01-01T00:00:00","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/msr-research-item\/tracing-data-errors-with-view-conditioned-causality\/"},"modified":"2018-10-16T20:50:41","modified_gmt":"2018-10-17T03:50:41","slug":"tracing-data-errors-with-view-conditioned-causality","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/tracing-data-errors-with-view-conditioned-causality\/","title":{"rendered":"Tracing Data Errors with View-Conditioned Causality"},"content":{"rendered":"

A surprising query result is often an indication of errors in
\nthe query or the underlying data. Recent work suggests us-
\ning causal reasoning to nd explanations for the surprising
\nresult. In practice, however, one often has multiple queries
\nand\/or multiple answers, some of which may be considered
\ncorrect and others unexpected. In this paper, we focus on
\ndetermining the causes of a set of unexpected results, pos-
\nsibly conditioned on some prior knowledge of the correct-
\nness of another set of results. We call this problem View-
\nConditioned Causality. We adapt the denitions of causa-
\nlity and responsibility for the case of multiple answers\/views
\nand provide a non-trivial algorithm that reduces the problem
\nof nding causes and their responsibility to a satisability
\nproblem that can be solved with existing tools. We evaluate
\nboth the accuracy and eectiveness of our approach on a real
\ndataset of user-generated mobile device tracking data, and
\ndemonstrate that it can identify causes of error more eec-
\ntively than static Boolean in
\nuence and alternative notions
\nof causality.<\/p>\n","protected":false},"excerpt":{"rendered":"

A surprising query result is often an indication of errors in the query or the underlying data. Recent work suggests us- ing causal reasoning to nd explanations for the surprising result. In practice, however, one often has multiple queries and\/or multiple answers, some of which may be considered correct and others unexpected. In this paper, […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13547],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-160923","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-systems-and-networking","msr-locale-en_us"],"msr_publishername":"ACM","msr_edition":"SIGMOD'11: Proceedings of the 2011 ACM SIGMOD international conference on Management of data","msr_affiliation":"","msr_published_date":"2011-01-01","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"SIGMOD'11: Proceedings of the 2011 ACM SIGMOD international conference on Management of data","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"206699","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","title":"causality-sigmod2011.pdf","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/causality-sigmod2011.pdf","id":206699,"label_id":0}],"msr_related_uploader":"","msr_attachments":[{"id":206699,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/causality-sigmod2011.pdf"}],"msr-author-ordering":[{"type":"text","value":"Alexandra Meliou","user_id":0,"rest_url":false},{"type":"text","value":"Wolfgang Gatterbauer","user_id":0,"rest_url":false},{"type":"user_nicename","value":"sumann","user_id":33753,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=sumann"},{"type":"text","value":"Dan Suciu","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[],"msr_project":[],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/160923"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":2,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/160923\/revisions"}],"predecessor-version":[{"id":530782,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/160923\/revisions\/530782"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=160923"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=160923"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=160923"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=160923"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=160923"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=160923"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=160923"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=160923"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=160923"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=160923"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=160923"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=160923"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=160923"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=160923"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=160923"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=160923"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}