{"id":161336,"date":"2005-01-01T00:00:00","date_gmt":"2005-01-01T00:00:00","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/msr-research-item\/modeling-hair-from-multi-views\/"},"modified":"2018-10-16T20:12:11","modified_gmt":"2018-10-17T03:12:11","slug":"modeling-hair-from-multi-views","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/modeling-hair-from-multi-views\/","title":{"rendered":"Modeling Hair from Multi Views"},"content":{"rendered":"
In this paper, we propose a novel image-based approach to model hair geometry from images taken at multiple viewpoints. Unlike previous hair modeling techniques that require intensive user interactions or rely on special capturing setup under controlled illumination conditions, we use a handheld camera to capture hair images under uncontrolled illumination conditions. Our multi-view approach is natural and flexible for capturing. It also provides inherent strong and accurate geometric constraints to recover hair models. In our approach, the hair fibers are synthesized from local image orientations. Each synthesized fiber segment is validated and optimally triangulated from all visible views. The hair volume and the visibility of synthesized fibers can also be reliably estimated from multiple views. Flexibility of acquisition, little user interaction, and high quality results of recovered complex hair models are the key advantages of our method.<\/p>\n<\/div>\n
<\/p>\n","protected":false},"excerpt":{"rendered":"
In this paper, we propose a novel image-based approach to model hair geometry from images taken at multiple viewpoints. Unlike previous hair modeling techniques that require intensive user interactions or rely on special capturing setup under controlled illumination conditions, we use a handheld camera to capture hair images under uncontrolled illumination conditions. Our multi-view approach […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13562,13551],"msr-publication-type":[193718],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-161336","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-computer-vision","msr-research-area-graphics-and-multimedia","msr-locale-en_us"],"msr_publishername":"ACM","msr_edition":"ACM SIGGRAPH 2005","msr_affiliation":"","msr_published_date":"2005-01-01","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"MSR-TR-2005-191","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"ACM SIGGRAPH 2005","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"209638","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","title":"hair05.pdf","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/hair05.pdf","id":209638,"label_id":0}],"msr_related_uploader":"","msr_attachments":[{"id":209638,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/hair05.pdf"}],"msr-author-ordering":[{"type":"user_nicename","value":"yichenw","user_id":34999,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=yichenw"},{"type":"user_nicename","value":"eyalofek","user_id":31772,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=eyalofek"},{"type":"text","value":"Long Quan","user_id":0,"rest_url":false},{"type":"user_nicename","value":"hshum","user_id":32045,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=hshum"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[],"msr_project":[491900],"publication":[],"video":[],"download":[],"msr_publication_type":"techreport","related_content":{"projects":[{"ID":491900,"post_title":"Avatars","post_name":"avatar-embodiment-standard-questionnaire","post_type":"msr-project","post_date":"2018-06-20 10:36:19","post_modified":"2020-04-09 18:55:15","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/avatar-embodiment-standard-questionnaire\/","post_excerpt":" Inside Virtual Reality (VR), users are represented by avatars. When the avatars are collocated from in first-person perspective, users experience what is commonly known as embodiment. When doing so, participants have the feeling that the own body has been substituted by the self-avatar, and that the new body is the source of the sensations. Embodiment is complex as it includes not only body ownership over the avatar, but also agency, co-location, and external appearance.…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/491900"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/161336","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/161336\/revisions"}],"predecessor-version":[{"id":524497,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/161336\/revisions\/524497"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=161336"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=161336"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=161336"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=161336"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=161336"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=161336"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=161336"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=161336"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=161336"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=161336"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=161336"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=161336"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=161336"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=161336"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=161336"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=161336"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}