{"id":161804,"date":"2011-04-01T00:00:00","date_gmt":"2011-04-01T00:00:00","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/msr-research-item\/fractional-similarity-cross-lingual-feature-selection-for-search\/"},"modified":"2018-10-16T19:59:20","modified_gmt":"2018-10-17T02:59:20","slug":"fractional-similarity-cross-lingual-feature-selection-for-search","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/fractional-similarity-cross-lingual-feature-selection-for-search\/","title":{"rendered":"Fractional Similarity: Cross-lingual Feature Selection for Search"},"content":{"rendered":"
\n

Training data as well as supplementary data such as usage-based click behavior may abound in one search market (i.e., a particular region, domain, or language) and be much scarcer in another market. Transfer methods attempt to improve performance in these resource-scarce markets by leveraging data across markets. However, differences in feature distributions across markets can change the optimal model.We introduce a method called Fractional Similarity, which uses query-based variance within a market to obtain more reliable estimates of feature deviations across markets. An empirical analysis demonstrates that using this scoring method as a feature selection criterion in cross-lingual transfer improves relevance ranking in the foreign language and compares favorably to a baseline based on KL divergence.<\/p>\n<\/div>\n

<\/p>\n","protected":false},"excerpt":{"rendered":"

Training data as well as supplementary data such as usage-based click behavior may abound in one search market (i.e., a particular region, domain, or language) and be much scarcer in another market. Transfer methods attempt to improve performance in these resource-scarce markets by leveraging data across markets. However, differences in feature distributions across markets can […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13555],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-161804","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-search-information-retrieval","msr-locale-en_us"],"msr_publishername":"","msr_edition":"Proceedings of the 33rd Annual European Conference on Information Retrieval (ECIR 2011)","msr_affiliation":"","msr_published_date":"2011-04-01","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"Proceedings of the 33rd Annual European Conference on Information Retrieval (ECIR 2011)","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"http:\/\/research.microsoft.com\/en-us\/um\/people\/pauben\/papers\/FractionalSimilarity-ECIR-2011-jagarlamudi-bennett.pdf","msr_doi":"","msr_publication_uploader":[{"type":"url","title":"http:\/\/research.microsoft.com\/en-us\/um\/people\/pauben\/papers\/FractionalSimilarity-ECIR-2011-jagarlamudi-bennett.pdf","viewUrl":false,"id":false,"label_id":0}],"msr_related_uploader":"","msr_attachments":[{"id":0,"url":"http:\/\/research.microsoft.com\/en-us\/um\/people\/pauben\/papers\/FractionalSimilarity-ECIR-2011-jagarlamudi-bennett.pdf"}],"msr-author-ordering":[{"type":"text","value":"Jagadeesh Jagarlamudi","user_id":0,"rest_url":false},{"type":"user_nicename","value":"pauben","user_id":33201,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=pauben"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[144672],"msr_project":[],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/161804","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/161804\/revisions"}],"predecessor-version":[{"id":517070,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/161804\/revisions\/517070"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=161804"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=161804"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=161804"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=161804"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=161804"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=161804"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=161804"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=161804"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=161804"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=161804"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=161804"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=161804"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=161804"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=161804"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=161804"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=161804"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}