{"id":162007,"date":"2012-04-01T00:00:00","date_gmt":"2012-04-01T00:00:00","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/msr-research-item\/on-discovery-of-traveling-companions-from-streaming-trajectories\/"},"modified":"2018-10-16T20:06:04","modified_gmt":"2018-10-17T03:06:04","slug":"on-discovery-of-traveling-companions-from-streaming-trajectories","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/on-discovery-of-traveling-companions-from-streaming-trajectories\/","title":{"rendered":"On Discovery of Traveling Companions from Streaming Trajectories"},"content":{"rendered":"

The advance of object tracking technologies leads to huge volumes of spatio-temporal data collected in the form of trajectory data stream. In this study, we investigate the problem of discovering object groups that travel together ( i.e. , traveling companions) from streaming trajectories. Such technique has broad applications in the areas of scienti\ufb01c study, transportation management and military surveillance. To discover traveling companions, the monitoring system should cluster the objects of each snapshot and intersect the clustering results to retrieve moving-together objects. Since both clustering and intersection steps involve high computational overhead, the key issue of companion discovery is to improve the ef\ufb01ciency of algorithms. We propose the models of closed companion candidates and smart intersection to accelerate data processing. A data structure termed traveling buddy is designed to facilitate scalable and \ufb02exible companion discovery from streaming trajectories. The traveling buddies are micro-groups of objects that are tightly bound together. By only storing the object relationships rather than their spatial coordinates, the buddies can be dynamically maintained along trajectory stream with low cost. Based on traveling buddies, the system can discover companions without accessing the object details. The proposed methods are evaluated with extensive experiments on both real and synthetic datasets. The buddy-based method is an order of magnitude faster than baselines. It also achieves higher precision and recall in companion discovery.<\/p>\n","protected":false},"excerpt":{"rendered":"

The advance of object tracking technologies leads to huge volumes of spatio-temporal data collected in the form of trajectory data stream. In this study, we investigate the problem of discovering object groups that travel together ( i.e. , traveling companions) from streaming trajectories. Such technique has broad applications in the areas of scienti\ufb01c study, transportation […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13561,13563],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-162007","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-algorithms","msr-research-area-data-platform-analytics","msr-locale-en_us"],"msr_publishername":"","msr_edition":"Proceedings of the 28th International Conference on Data Engineering 2012","msr_affiliation":"","msr_published_date":"2012-04-01","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"206075","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","title":"On%20Discovery%20of%20Traveling%20Companions%20from%20Streaming%20Trajectories.pdf","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/On20Discovery20of20Traveling20Companions20from20Streaming20Trajectories.pdf","id":206075,"label_id":0},{"type":"file","title":"ICDE_Companion_Discovery.pptx","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/ICDE_Companion_Discovery.pptx","id":206076,"label_id":0}],"msr_related_uploader":"","msr_attachments":[{"id":206076,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/ICDE_Companion_Discovery.pptx"},{"id":206075,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/On20Discovery20of20Traveling20Companions20from20Streaming20Trajectories.pdf"}],"msr-author-ordering":[{"type":"user_nicename","value":"yuzheng","user_id":35088,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=yuzheng"},{"type":"text","value":"Lu-An Tang","user_id":0,"rest_url":false},{"type":"text","value":"Jiawei Han","user_id":0,"rest_url":false},{"type":"text","value":"Alice Leung","user_id":0,"rest_url":false},{"type":"text","value":"Chih-Chieh Hung","user_id":0,"rest_url":false},{"type":"text","value":"Wen-Chih Peng","user_id":0,"rest_url":false},{"type":"text","value":"Jing Yuan","user_id":0,"rest_url":false},{"type":"user_nicename","value":"nichy","user_id":33085,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=nichy"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[],"msr_project":[170845,170824],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":170845,"post_title":"Computing with Spatial Trajectories","post_name":"computing-with-spatial-trajectories","post_type":"msr-project","post_date":"2011-11-08 23:36:50","post_modified":"2017-06-06 09:31:37","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/computing-with-spatial-trajectories\/","post_excerpt":"Editor: Yu Zheng,\u00a0Xiaofang Zhou Foreword by Jiawei Han Editorial board: Ralf Hartmut G\u00fcting, Hans-Peter Kriegel, Hanan Samet [Order it on Amazon] [Buy it from Springer] [Preview this book (Outline and Preface)]   With the rapid development of wireless communication and mobile computing technologies and global positioning and navigational systems, spatial trajectory data has been mounting up, calling for systematic research and development of new computing technologies for storage, preprocessing, retrieving, and mining of trajectory data…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/170845"}]}},{"ID":170824,"post_title":"Urban Computing","post_name":"urban-computing","post_type":"msr-project","post_date":"2016-07-03 10:26:01","post_modified":"2018-04-07 17:32:40","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/urban-computing\/","post_excerpt":"Concept\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 (\u4e2d\u6587\u4e3b\u9875) Urban computing is a process of acquisition, integration, and analysis of big and heterogeneous data generated by a diversity of sources in urban spaces, such as sensors, devices, vehicles, buildings, and human, to tackle the major issues that cities face, e.g. air pollution, increased energy consumption and traffic congestion. Urban computing connects unobtrusive and ubiquitous sensing technologies, advanced data management and analytics models, and novel visualization methods, to create win-win-win solutions that improve…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/170824"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/162007"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/162007\/revisions"}],"predecessor-version":[{"id":433014,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/162007\/revisions\/433014"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=162007"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=162007"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=162007"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=162007"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=162007"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=162007"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=162007"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=162007"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=162007"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=162007"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=162007"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=162007"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=162007"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=162007"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=162007"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=162007"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}