{"id":162522,"date":"2011-11-01T00:00:00","date_gmt":"2011-11-01T00:00:00","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/msr-research-item\/inferring-taxi-status-using-gps-trajectories\/"},"modified":"2018-10-16T20:17:04","modified_gmt":"2018-10-17T03:17:04","slug":"inferring-taxi-status-using-gps-trajectories","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/inferring-taxi-status-using-gps-trajectories\/","title":{"rendered":"Inferring Taxi Status Using GPS Trajectories"},"content":{"rendered":"
In this paper, we infer the statuses of a taxi, consisting of occupied, non-occupied and parked, in terms of its GPS trajectory. The status information can enable urban computing for improving a city\u2019s transportation systems and land use planning. In our solution, we first identify and extract a set of effective features incorporating the knowledge of a single trajectory, historical trajectories and geographic data like road network. Second, a parking status detection algorithm is devised to find parking places (from a given trajectory), dividing a trajectory into segments (i.e., sub-trajectories). Third, we propose a two-phase inference model to learn the status (occupied or non-occupied) of each point from a taxi segment. This model first uses the identified features to train a local probabilistic classifier and then carries out a Hidden Semi-Markov Model (HSMM) for globally considering long term travel patterns. We evaluated our method with a large-scale real-world trajectory dataset generated by 600 taxis, showing the advantages of our method over baselines.<\/p>\n<\/div>\n
<\/p>\n","protected":false},"excerpt":{"rendered":"
In this paper, we infer the statuses of a taxi, consisting of occupied, non-occupied and parked, in terms of its GPS trajectory. The status information can enable urban computing for improving a city\u2019s transportation systems and land use planning. In our solution, we first identify and extract a set of effective features incorporating the knowledge […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13563,13555],"msr-publication-type":[193718],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-162522","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-data-platform-analytics","msr-research-area-search-information-retrieval","msr-locale-en_us"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2011-11-01","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"MSR-TR-2011-144","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"206308","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","title":"MSRA-TR_taxi_status.pdf","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/MSRA-TR_taxi_status.pdf","id":206308,"label_id":0}],"msr_related_uploader":"","msr_attachments":[{"id":206308,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/MSRA-TR_taxi_status.pdf"}],"msr-author-ordering":[{"type":"text","value":"Yin Zhu","user_id":0,"rest_url":false},{"type":"user_nicename","value":"yuzheng","user_id":35088,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=yuzheng"},{"type":"text","value":"Liuhang Zhang","user_id":0,"rest_url":false},{"type":"text","value":"Darshan Santani","user_id":0,"rest_url":false},{"type":"user_nicename","value":"xingx","user_id":34906,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=xingx"},{"type":"text","value":"Qiang Yang","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[],"msr_project":[170845,170558,248075],"publication":[],"video":[],"download":[],"msr_publication_type":"techreport","related_content":{"projects":[{"ID":170845,"post_title":"Computing with Spatial Trajectories","post_name":"computing-with-spatial-trajectories","post_type":"msr-project","post_date":"2011-11-08 23:36:50","post_modified":"2017-06-06 09:31:37","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/computing-with-spatial-trajectories\/","post_excerpt":"Editor: Yu Zheng,\u00a0Xiaofang Zhou Foreword by Jiawei Han Editorial board: Ralf Hartmut G\u00fcting, Hans-Peter Kriegel, Hanan Samet [Order it on Amazon] [Buy it from Springer] [Preview this book (Outline and Preface)] With the rapid development of wireless communication and mobile computing technologies and global positioning and navigational systems, spatial trajectory data has been mounting up, calling for systematic research and development of new computing technologies for storage, preprocessing, retrieving, and mining of trajectory data…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/170845"}]}},{"ID":170558,"post_title":"T-Drive: Driving Directions based on Taxi Traces","post_name":"t-drive-driving-directions-based-on-taxi-traces","post_type":"msr-project","post_date":"2010-09-16 23:38:30","post_modified":"2017-06-19 13:28:23","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/t-drive-driving-directions-based-on-taxi-traces\/","post_excerpt":"T-drive is a smart driving direction services based on GPS trajectories of a large number of taxis. It helps user find out the practically fastest path to a destination at a given departure time. A\u00a0prototype has been built based on a\u00a0real-world trajectory dataset generated by 30,000 taxis in Beijing in\u00a0a period of 3 monthes. The service is available (within Microsoft corpnet), which\u00a0provides\u00a0a user\u00a0with the practically fastest path with less online computation and according to your…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/170558"}]}},{"ID":248075,"post_title":"Trajectory Data Mining","post_name":"trajectory-data-mining","post_type":"msr-project","post_date":"2016-07-04 00:24:38","post_modified":"2023-07-05 08:23:26","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/trajectory-data-mining\/","post_excerpt":"The advances in location-acquisition and mobile computing techniques have generated massive spatial trajectory data, which represent the mobility of a diversity of moving objects, such as people, vehicles and animals. Many techniques have been proposed for processing, managing and mining trajectory data in the past decade, fostering a broad range of applications. In this article, we conduct a systematic survey on the major research into trajectory data mining, providing a panorama of the field as…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/248075"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/162522"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/162522\/revisions"}],"predecessor-version":[{"id":526292,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/162522\/revisions\/526292"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=162522"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=162522"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=162522"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=162522"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=162522"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=162522"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=162522"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=162522"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=162522"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=162522"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=162522"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=162522"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=162522"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=162522"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=162522"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=162522"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}