{"id":162548,"date":"2011-05-01T00:00:00","date_gmt":"2011-05-01T00:00:00","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/msr-research-item\/sentence-simplification-for-spoken-language-understanding\/"},"modified":"2018-10-16T20:26:46","modified_gmt":"2018-10-17T03:26:46","slug":"sentence-simplification-for-spoken-language-understanding","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/sentence-simplification-for-spoken-language-understanding\/","title":{"rendered":"Sentence Simplification for Spoken Language Understanding"},"content":{"rendered":"
\n

In this paper, we present a sentence simplification method and demonstrate its use to improve intent determination and slot filling tasks in spoken language understanding (SLU) systems. This research is motivated by the observation that, while current statistical SLU models usually perform accurately for simple, well-formed sentences, error rates increase for more complex, longer, more natural or spontaneous utterances. Furthermore, users familiar with web search usually formulate their information requests as a keyword search query, suggesting that frameworks which can handle both forms of inputs is required. We propose a dependency parsing-based sentence simplification approach that extracts a set of keywords from natural language sentences and uses those in addition to entire utterances for completing SLU tasks. We evaluated this approach using the well-studied ATIS corpus with manual and automatic transcriptions and observed significant error reductions for both intent determination (30% relative) and slot filling (15% relative) tasks over the state-of-theart performances.<\/p>\n<\/div>\n

<\/p>\n","protected":false},"excerpt":{"rendered":"

In this paper, we present a sentence simplification method and demonstrate its use to improve intent determination and slot filling tasks in spoken language understanding (SLU) systems. This research is motivated by the observation that, while current statistical SLU models usually perform accurately for simple, well-formed sentences, error rates increase for more complex, longer, more […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13545],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-162548","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-human-language-technologies","msr-locale-en_us"],"msr_publishername":"IEEE SPS","msr_edition":"IEEE International Conference on Acoustics, Speech, and Signal Processing","msr_affiliation":"","msr_published_date":"2011-05-01","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"220393","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","title":"icassp11-1.pdf","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2011\/05\/icassp11-1.pdf","id":220393,"label_id":0}],"msr_related_uploader":"","msr_attachments":[{"id":220393,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2011\/05\/icassp11-1.pdf"}],"msr-author-ordering":[{"type":"user_nicename","value":"gokhant","user_id":31896,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=gokhant"},{"type":"user_nicename","value":"dilekha","user_id":31630,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=dilekha"},{"type":"user_nicename","value":"lheck","user_id":32659,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=lheck"},{"type":"user_nicename","value":"supartha","user_id":33762,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=supartha"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[],"msr_project":[171393,171150],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":171393,"post_title":"Knowledge Graphs and Linked Big Data Resources for Conversational Understanding","post_name":"knowledge-graphs-and-linked-big-data-resources-for-conversational-understanding","post_type":"msr-project","post_date":"2014-08-13 20:10:32","post_modified":"2017-06-19 11:05:46","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/knowledge-graphs-and-linked-big-data-resources-for-conversational-understanding\/","post_excerpt":"Interspeech 2014 Tutorial Web Page State-of-the-art statistical spoken language processing typically requires significant manual effort to construct domain-specific schemas (ontologies) as well as manual effort to annotate training data against these schemas. At the same time, a recent surge of activity and progress on semantic web-related concepts from the large search-engine companies represents a potential alternative to the manually intensive design of spoken language processing systems. Standards such as schema.org have been established for schemas…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/171393"}]}},{"ID":171150,"post_title":"Spoken Language Understanding","post_name":"spoken-language-understanding","post_type":"msr-project","post_date":"2013-05-01 11:46:32","post_modified":"2019-08-19 14:48:51","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/spoken-language-understanding\/","post_excerpt":"Spoken language understanding (SLU) is an emerging field in between the areas of speech processing and natural language processing. The term spoken language understanding has largely been coined for targeted understanding of human speech directed at machines. This project covers our research on SLU tasks such as domain detection, intent determination, and slot filling, using data-driven methods. Projects Deeper Understanding: Moving\u00a0beyond shallow targeted understanding towards building domain independent SLU models. Scaling SLU: Quickly bootstrapping SLU…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/171150"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/162548","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":2,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/162548\/revisions"}],"predecessor-version":[{"id":527815,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/162548\/revisions\/527815"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=162548"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=162548"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=162548"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=162548"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=162548"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=162548"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=162548"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=162548"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=162548"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=162548"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=162548"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=162548"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=162548"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=162548"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=162548"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=162548"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}