{"id":162965,"date":"2012-08-01T00:00:00","date_gmt":"2012-08-01T00:00:00","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/msr-research-item\/automatic-taxonomy-construction-from-keywords\/"},"modified":"2018-10-16T21:15:38","modified_gmt":"2018-10-17T04:15:38","slug":"automatic-taxonomy-construction-from-keywords","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/automatic-taxonomy-construction-from-keywords\/","title":{"rendered":"Automatic Taxonomy Construction from Keywords"},"content":{"rendered":"
\n

Taxonomies, especially taxonomies in speci\ufb01c domains, are becoming indispensable to a growing number of applications. State-of-the-art approaches assume that there exists a text corpus that accurately characterizes the domain of interest, and that a taxonomy can be derived from the text corpus using information extraction techniques. In reality, neither of the two assumptions is valid, especially for highly focused or fast-changing domains. In this paper, we study a challenging problem: Deriving a taxonomy from a set of keyword phrases. A solution can bene\ufb01t many real life applications because i) keywords give users the \ufb02exibility and ease to characterize a speci\ufb01c domain; and ii) in many applications, such as online advertisements, the domain of interest is already represented by a set of keywords. However, it is impossible to create a taxonomy out of a keyword set itself. We argue that additional knowledge and context are needed. To this end, we \ufb01rst use a general purpose knowledgebase and keyword search to supply the required knowledge and context. Then we develop a Bayesian approach to build a hierarchical taxonomy for a given set of keywords. We reduce the complexity of previous hierarchical clustering approaches from O(n2<\/sup> log n) to O(n log n), so that we can derive a domain speci\ufb01c taxonomy from one million keyword phrases in less than an hour. Finally, we conduct comprehensive large scale experiments to show the effectiveness and efficiency of our approach. A real life example of building an insurance-related query taxonomy illustrates the usefulness of our approach for speci\ufb01c domains.<\/p>\n<\/div>\n

<\/p>\n","protected":false},"excerpt":{"rendered":"

Taxonomies, especially taxonomies in speci\ufb01c domains, are becoming indispensable to a growing number of applications. State-of-the-art approaches assume that there exists a text corpus that accurately characterizes the domain of interest, and that a taxonomy can be derived from the text corpus using information extraction techniques. In reality, neither of the two assumptions is valid, […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556,13555],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-162965","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-research-area-search-information-retrieval","msr-locale-en_us"],"msr_publishername":"ACM","msr_edition":"SIGKDD","msr_affiliation":"","msr_published_date":"2012-08-01","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"SIGKDD","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"219223","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","title":"BRT_KeywordTaxonomy_new.pdf","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2012\/08\/BRT_KeywordTaxonomy_new.pdf","id":219223,"label_id":0}],"msr_related_uploader":"","msr_attachments":[{"id":219223,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2012\/08\/BRT_KeywordTaxonomy_new.pdf"}],"msr-author-ordering":[{"type":"text","value":"Xueqing Liu","user_id":0,"rest_url":false},{"type":"user_nicename","value":"yangs","user_id":34961,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=yangs"},{"type":"user_nicename","value":"shliu","user_id":33624,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=shliu"},{"type":"user_nicename","value":"haixunw","user_id":31951,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=haixunw"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[],"msr_project":[170584],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":170584,"post_title":"Probase","post_name":"probase","post_type":"msr-project","post_date":"2010-10-29 03:13:04","post_modified":"2017-06-05 10:40:21","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/probase\/","post_excerpt":"The goal of Probase is to make machines \u201caware\u201d of the mental world of human beings, so that\u00a0machines can better understand human communication. We do this by\u00a0giving certain general knowledge or certain common sense to machines.","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/170584"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/162965"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":2,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/162965\/revisions"}],"predecessor-version":[{"id":534280,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/162965\/revisions\/534280"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=162965"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=162965"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=162965"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=162965"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=162965"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=162965"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=162965"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=162965"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=162965"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=162965"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=162965"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=162965"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=162965"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=162965"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=162965"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=162965"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}