{"id":163215,"date":"2012-06-01T00:00:00","date_gmt":"2012-06-01T00:00:00","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/msr-research-item\/learning-functions-of-halfspaces-using-prefix-covers\/"},"modified":"2018-10-16T21:43:57","modified_gmt":"2018-10-17T04:43:57","slug":"learning-functions-of-halfspaces-using-prefix-covers","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/learning-functions-of-halfspaces-using-prefix-covers\/","title":{"rendered":"Learning functions of halfspaces using prefix covers"},"content":{"rendered":"
\n

We present a simple query-algorithm for learning arbitrary functions of k halfspaces under any product distribution on the Boolean hypercube. Our algorithms learn any function of k halfspaces to within accuracy eps in time O((nk\/eps)k+1<\/sup>) under any product distribution on 0,1n<\/sup> using read-once branching programs as a hypothesis.. This gives the fifirst poly(n, 1\/eps) algorithm for learning even the intersection of 2 halfspaces under the uniform distribution on 0,1n<\/sup>; previously known algorithms had an exponential dependence either on the accuracy parameter eps or the dimension n. To prove this result, we identify a new structural property of Boolean functions that yields learnability with queries: that of having a small prefix cover.<\/p>\n<\/div>\n

<\/p>\n","protected":false},"excerpt":{"rendered":"

We present a simple query-algorithm for learning arbitrary functions of k halfspaces under any product distribution on the Boolean hypercube. Our algorithms learn any function of k halfspaces to within accuracy eps in time O((nk\/eps)k+1) under any product distribution on 0,1n using read-once branching programs as a hypothesis.. This gives the fifirst poly(n, 1\/eps) algorithm […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13546],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-163215","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-computational-sciences-mathematics","msr-locale-en_us"],"msr_publishername":"Journal of Machine Learning Research","msr_edition":"COLT'12","msr_affiliation":"","msr_published_date":"2012-06-01","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"205978","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","title":"learnrobp.pdf","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/learnrobp.pdf","id":205978,"label_id":0}],"msr_related_uploader":"","msr_attachments":[{"id":205978,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/learnrobp.pdf"}],"msr-author-ordering":[{"type":"user_nicename","value":"parik","user_id":33192,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=parik"},{"type":"text","value":"Adam Klivans","user_id":0,"rest_url":false},{"type":"user_nicename","value":"meka","user_id":32873,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=meka"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[],"msr_project":[171268],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":171268,"post_title":"Learning Theory","post_name":"learning-theory","post_type":"msr-project","post_date":"2014-01-28 11:40:38","post_modified":"2017-06-19 11:53:07","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/learning-theory\/","post_excerpt":"We work on questions motivated by machine learning, in particular from the theoretical and computational perspectives. Our goals are to mathematically understand the effectiveness of existing learning algorithms and to design new learning algorithms. We combine expertise from diverse fields such as algorithms and complexity, statistics, and convex geometry. We are interested in a broad range of problems.\u00a0For example, we have studied the following problems. Can we rigorously prove the effectiveness of practical algorithms? For…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/171268"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/163215"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":2,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/163215\/revisions"}],"predecessor-version":[{"id":538537,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/163215\/revisions\/538537"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=163215"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=163215"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=163215"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=163215"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=163215"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=163215"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=163215"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=163215"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=163215"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=163215"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=163215"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=163215"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=163215"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=163215"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=163215"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=163215"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}