{"id":163250,"date":"2012-10-29T00:00:00","date_gmt":"2012-10-29T00:00:00","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/msr-research-item\/click-patterns-an-empirical-representation-of-complex-query-intents\/"},"modified":"2018-10-16T21:49:32","modified_gmt":"2018-10-17T04:49:32","slug":"click-patterns-an-empirical-representation-of-complex-query-intents","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/click-patterns-an-empirical-representation-of-complex-query-intents\/","title":{"rendered":"Click Patterns: An Empirical Representation of Complex Query Intents"},"content":{"rendered":"
\n

Understanding users’ search intents is critical component of modern search engines. A key limitation made by most query log analyses is the assumption that each clicked web result represents one unique intent. However, there are many search tasks, such as comparison shopping or in-depth research, where a user’s intent is to explore many documents. In these cases, the assumption of a one-to-one co-occurrence between clicked documents and user intent breaks down.<\/p>\n

To capture and understand such behaviors, we propose the use of click patterns. Click patterns capture the relationship among clicks on search results by treating the set of clicks made by a user as a single unit. We aggregate click patterns together using a hierarchical clustering algorithm to discover the common click patterns. By using click patterns as an empirical representation of user intent, we are able to create a rich representation of mixtures of multiple navigational and informational intents. We analyze real search logs and demonstrate that such complex mixtures of intents do occur in the wild and can be identified using click patterns.<\/p>\n

We further demonstrate the usefulness of click patterns by integrating them into a measure of query ambiguity and into a query recommendation task. We show that calculating query ambiguity as the entropy over the distribution of click patterns provides a measure of ambiguity with improved discriminative power, consistency and temporal stability as compared to previous measures of ambiguity. We explore the use of click pattern similarity and click pattern entropy in generating query recommendations and show promising results.<\/p>\n<\/div>\n

<\/p>\n","protected":false},"excerpt":{"rendered":"

Understanding users’ search intents is critical component of modern search engines. A key limitation made by most query log analyses is the assumption that each clicked web result represents one unique intent. However, there are many search tasks, such as comparison shopping or in-depth research, where a user’s intent is to explore many documents. In […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13555],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-163250","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-search-information-retrieval","msr-locale-en_us"],"msr_publishername":"ACM","msr_edition":"21st ACM International Conference on Information and Knowledge Management (CIKM 2012)","msr_affiliation":"","msr_published_date":"2012-10-29","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"21st ACM International Conference on Information and Knowledge Management (CIKM 2012)","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"205792","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","title":"cikm-clickpatterns.pdf","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/cikm-clickpatterns.pdf","id":205792,"label_id":0}],"msr_related_uploader":"","msr_attachments":[{"id":205792,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/cikm-clickpatterns.pdf"}],"msr-author-ordering":[{"type":"text","value":"Huizhong Duan","user_id":0,"rest_url":false},{"type":"user_nicename","value":"emrek","user_id":31739,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=emrek"},{"type":"text","value":"Chengxiang Zhai","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[],"msr_project":[],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/163250"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":2,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/163250\/revisions"}],"predecessor-version":[{"id":539386,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/163250\/revisions\/539386"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=163250"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=163250"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=163250"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=163250"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=163250"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=163250"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=163250"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=163250"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=163250"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=163250"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=163250"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=163250"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=163250"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=163250"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=163250"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=163250"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}