{"id":163296,"date":"2018-11-06T17:23:02","date_gmt":"2018-11-07T01:23:02","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/msr-research-item\/resource-optimal-single-qubit-quantum-circuits\/"},"modified":"2018-11-06T17:23:02","modified_gmt":"2018-11-07T01:23:02","slug":"resource-optimal-single-qubit-quantum-circuits","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/resource-optimal-single-qubit-quantum-circuits\/","title":{"rendered":"Resource-Optimal Single-Qubit Quantum Circuits"},"content":{"rendered":"
\n

Determining the optimal implementation of a quantum gate is critical for designing a quantum computer. We consider the crucial task of efficiently decomposing a general single-qubit quantum gate into a sequence of fault-tolerant quantum operations. For a given single-qubit circuit, we construct an optimal gate sequence consisting of fault-tolerant Hadamard (H) and \u03c0\/8 rotations (T). Our scheme is based on a novel canonical form for single-qubit quantum circuits and the corresponding rules for exactly reducing a general single-qubit circuit to our canonical form. The result is optimal in the number of T gates. We demonstrate that a precomputed epsilon net of canonical circuits in combination with our scheme lowers the depth of approximation circuits by up to 3 orders of magnitude compared to previously reported results.<\/p>\n<\/div>\n

<\/p>\n","protected":false},"excerpt":{"rendered":"

Determining the optimal implementation of a quantum gate is critical for designing a quantum computer. We consider the crucial task of efficiently decomposing a general single-qubit quantum gate into a sequence of fault-tolerant quantum operations. For a given single-qubit circuit, we construct an optimal gate sequence consisting of fault-tolerant Hadamard (H) and \u03c0\/8 rotations (T). […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13561,243138],"msr-publication-type":[193715],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-163296","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-algorithms","msr-research-area-quantum","msr-locale-en_us"],"msr_publishername":"American Physical Society","msr_edition":"","msr_affiliation":"","msr_published_date":"2012-11-08","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"5","msr_chapter":"","msr_isbn":"","msr_journal":"Physical Review Letters","msr_volume":"109","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"Also available at http:\/\/arxiv.org\/pdf\/1206.3223v1, and presented at the 12th Asian Quantum Information Science Conference (AQIS).","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"205760","msr_publicationurl":"http:\/\/link.aps.org\/doi\/10.1103\/PhysRevLett.109.190501","msr_doi":"","msr_publication_uploader":[{"type":"file","title":"AQIS12BocharovSvore.pdf","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/AQIS12BocharovSvore.pdf","id":205760,"label_id":0},{"type":"file","title":"1206.3223.pdf","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/1206.3223.pdf","id":205759,"label_id":0},{"type":"url","title":"http:\/\/link.aps.org\/doi\/10.1103\/PhysRevLett.109.190501","viewUrl":false,"id":false,"label_id":0}],"msr_related_uploader":"","msr_attachments":[{"id":0,"url":"http:\/\/link.aps.org\/doi\/10.1103\/PhysRevLett.109.190501"},{"id":205760,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/AQIS12BocharovSvore.pdf"},{"id":205759,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/1206.3223.pdf"}],"msr-author-ordering":[{"type":"user_nicename","value":"alexeib","user_id":30935,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=alexeib"},{"type":"user_nicename","value":"ksvore","user_id":32588,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=ksvore"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[],"msr_project":[],"publication":[],"video":[],"download":[],"msr_publication_type":"article","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/163296"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/163296\/revisions"}],"predecessor-version":[{"id":519958,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/163296\/revisions\/519958"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=163296"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=163296"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=163296"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=163296"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=163296"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=163296"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=163296"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=163296"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=163296"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=163296"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=163296"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=163296"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=163296"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=163296"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=163296"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=163296"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}