{"id":163458,"date":"2011-08-01T00:00:00","date_gmt":"2011-08-01T00:00:00","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/msr-research-item\/multi-domain-spoken-language-understanding-with-approximate-inference\/"},"modified":"2018-10-16T22:03:59","modified_gmt":"2018-10-17T05:03:59","slug":"multi-domain-spoken-language-understanding-with-approximate-inference","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/multi-domain-spoken-language-understanding-with-approximate-inference\/","title":{"rendered":"Multi-Domain Spoken Language Understanding with Approximate Inference"},"content":{"rendered":"
\n

This paper presents a semi-latent topic model for semantic domain detection in spoken language understanding systems. We use labeled utterance information to capture latent topics, which directly correspond to semantic domains. Additionally, we introduce an \u2019informative prior\u2019 for Bayesian inference that can simultaneously segment utterances of known domains into classes and divide them from out-of-domain utterances. We show that our model generalizes well on the task of classifying spoken language utterances and compare its results to those of an unsupervised topic model, which does not use labeled information.<\/p>\n<\/div>\n

<\/p>\n","protected":false},"excerpt":{"rendered":"

This paper presents a semi-latent topic model for semantic domain detection in spoken language understanding systems. We use labeled utterance information to capture latent topics, which directly correspond to semantic domains. Additionally, we introduce an \u2019informative prior\u2019 for Bayesian inference that can simultaneously segment utterances of known domains into classes and divide them from out-of-domain […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13545],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-163458","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-human-language-technologies","msr-locale-en_us"],"msr_publishername":"Annual Conference of the International Speech Communication Association (Interspeech)","msr_edition":"","msr_affiliation":"","msr_published_date":"2011-08-01","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"220180","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","title":"Asli-IS11.pdf","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2011\/08\/Asli-IS11.pdf","id":220180,"label_id":0}],"msr_related_uploader":"","msr_attachments":[{"id":220180,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2011\/08\/Asli-IS11.pdf"}],"msr-author-ordering":[{"type":"user_nicename","value":"aslicel","user_id":31123,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=aslicel"},{"type":"user_nicename","value":"dilekha","user_id":31630,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=dilekha"},{"type":"user_nicename","value":"gokhant","user_id":31896,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=gokhant"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[],"msr_project":[171150],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":171150,"post_title":"Spoken Language Understanding","post_name":"spoken-language-understanding","post_type":"msr-project","post_date":"2013-05-01 11:46:32","post_modified":"2019-08-19 14:48:51","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/spoken-language-understanding\/","post_excerpt":"Spoken language understanding (SLU) is an emerging field in between the areas of speech processing and natural language processing. The term spoken language understanding has largely been coined for targeted understanding of human speech directed at machines. This project covers our research on SLU tasks such as domain detection, intent determination, and slot filling, using data-driven methods. Projects Deeper Understanding: Moving\u00a0beyond shallow targeted understanding towards building domain independent SLU models. Scaling SLU: Quickly bootstrapping SLU…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/171150"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/163458","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":2,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/163458\/revisions"}],"predecessor-version":[{"id":541770,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/163458\/revisions\/541770"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=163458"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=163458"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=163458"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=163458"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=163458"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=163458"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=163458"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=163458"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=163458"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=163458"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=163458"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=163458"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=163458"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=163458"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=163458"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=163458"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}