{"id":163802,"date":"2011-12-01T00:00:00","date_gmt":"2011-12-01T00:00:00","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/msr-research-item\/strategies-for-training-large-scale-neural-network-language-models\/"},"modified":"2018-10-16T20:01:01","modified_gmt":"2018-10-17T03:01:01","slug":"strategies-for-training-large-scale-neural-network-language-models","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/strategies-for-training-large-scale-neural-network-language-models\/","title":{"rendered":"Strategies for Training Large Scale Neural Network Language Models"},"content":{"rendered":"
\n

We describe how to effectively train neural network based language models on large data sets. Fast convergence during training and better overall performance is observed when the training data are sorted by their relevance. We introduce hash-based implementation of a maximum entropy model, that can be trained as a part of the neural network model. This leads to significant reduction of computational complexity. We achieved around 10% relative reduction of word error rate on English Broadcast News speech recognition task, against large 4-gram model trained on 400M tokens.<\/p>\n<\/div>\n

<\/p>\n","protected":false},"excerpt":{"rendered":"

We describe how to effectively train neural network based language models on large data sets. Fast convergence during training and better overall performance is observed when the training data are sorted by their relevance. We introduce hash-based implementation of a maximum entropy model, that can be trained as a part of the neural network model. […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13545],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-163802","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-human-language-technologies","msr-locale-en_us"],"msr_publishername":"IEEE Automatic Speech Recognition and Understanding Workshop","msr_edition":"","msr_affiliation":"","msr_published_date":"2011-12-01","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"219841","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","title":"ASRU-2011.pdf","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2011\/12\/ASRU-2011.pdf","id":219841,"label_id":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"text","value":"Tomas Mikolov","user_id":0,"rest_url":false},{"type":"user_nicename","value":"anoopd","user_id":31047,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=anoopd"},{"type":"text","value":"Daniel Povey","user_id":0,"rest_url":false},{"type":"text","value":"Lukas Burget","user_id":0,"rest_url":false},{"type":"text","value":"Jan "Honza" Cernocky","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[],"msr_project":[171065],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":171065,"post_title":"Recurrent Neural Networks for Language Processing","post_name":"recurrent-neural-networks-for-language-processing","post_type":"msr-project","post_date":"2012-11-23 11:45:31","post_modified":"2019-08-19 14:55:37","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/recurrent-neural-networks-for-language-processing\/","post_excerpt":"This project focuses on advancing the state-of-the-art in language processing with recurrent neural networks. We are currently applying these to language modeling, machine translation, speech recognition, language understanding and meaning representation. A special interest in is adding side-channels of information as input, to model phenomena which are not easily handled in other frameworks. A toolkit for doing RNN language modeling with side-information is in the associated download. Sample word vectors for use with this toolkit…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/171065"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/163802","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/163802\/revisions"}],"predecessor-version":[{"id":518626,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/163802\/revisions\/518626"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=163802"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=163802"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=163802"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=163802"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=163802"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=163802"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=163802"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=163802"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=163802"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=163802"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=163802"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=163802"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=163802"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=163802"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=163802"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=163802"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}