{"id":163978,"date":"2003-12-16T00:00:00","date_gmt":"2003-12-16T08:00:00","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/msr-research-item\/trading-inversions-for-multiplications-in-elliptic-curve-cryptography-2\/"},"modified":"2018-10-16T20:06:18","modified_gmt":"2018-10-17T03:06:18","slug":"trading-inversions-for-multiplications-in-elliptic-curve-cryptography-2","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/trading-inversions-for-multiplications-in-elliptic-curve-cryptography-2\/","title":{"rendered":"Trading Inversions for Multiplications in Elliptic Curve Cryptography"},"content":{"rendered":"
Recently, Eisentraeger-Lauter-Montgomery proposed a method for speeding up scalar multiplication on elliptic curves. That method relies on improved formulae for evaluating S = 2P + Q from given points P and Q on an elliptic curve. Compared to the naive approach, the improved formulae save a field multiplication each time the operation is performed. This paper proposes a variant which is faster whenever a field inversion is more expensive than six field multiplications. We also give an improvement when tripling or quadrupling a point, and present a ternary\/binary method to perform efficient scalar multiplication.<\/p>\n","protected":false},"excerpt":{"rendered":"
Recently, Eisentraeger-Lauter-Montgomery proposed a method for speeding up scalar multiplication on elliptic curves. That method relies on improved formulae for evaluating S = 2P + Q from given points P and Q on an elliptic curve. Compared to the naive approach, the improved formulae save a field multiplication each time the operation is performed. This […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13558],"msr-publication-type":[193715],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-163978","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-security-privacy-cryptography","msr-locale-en_us"],"msr_publishername":"Springer","msr_edition":"Designs, Codes, and Cryptography","msr_affiliation":"","msr_published_date":"2003-12-16","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"257","msr_chapter":"","msr_isbn":"","msr_journal":"Designs, Codes, and Cryptography","msr_volume":"2003","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"http:\/\/eprint.iacr.org\/2003\/257","msr_doi":"","msr_publication_uploader":[{"type":"url","title":"http:\/\/eprint.iacr.org\/2003\/257","viewUrl":false,"id":false,"label_id":0}],"msr_related_uploader":"","msr_attachments":[{"id":0,"url":"http:\/\/eprint.iacr.org\/2003\/257"}],"msr-author-ordering":[{"type":"text","value":"Mathieu Ciet","user_id":0,"rest_url":false},{"type":"text","value":"Marc Joye","user_id":0,"rest_url":false},{"type":"user_nicename","value":"klauter","user_id":32558,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=klauter"},{"type":"user_nicename","value":"petmon","user_id":33245,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=petmon"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[],"msr_project":[239792],"publication":[],"video":[],"download":[],"msr_publication_type":"article","related_content":{"projects":[{"ID":239792,"post_title":"Elliptic Curve Cryptography (ECC)","post_name":"elliptic-curve-cryptography-ecc","post_type":"msr-project","post_date":"2016-06-29 20:49:17","post_modified":"2020-03-31 12:25:10","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/elliptic-curve-cryptography-ecc\/","post_excerpt":"In the last 25 years, Elliptic Curve Cryptography (ECC) has become a mainstream primitive for cryptographic protocols and applications. ECC has been standardized for use in key exchange and digital signatures. This project focuses on efficient generation of parameters and implementation of ECC and pairing-based crypto primitives, across architectures and platforms.","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/239792"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/163978"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/163978\/revisions"}],"predecessor-version":[{"id":403043,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/163978\/revisions\/403043"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=163978"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=163978"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=163978"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=163978"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=163978"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=163978"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=163978"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=163978"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=163978"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=163978"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=163978"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=163978"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=163978"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=163978"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=163978"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=163978"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}