{"id":164120,"date":"2013-03-01T00:00:00","date_gmt":"2013-03-01T00:00:00","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/msr-research-item\/a-data-driven-approach-for-algebraic-loop-invariants-2\/"},"modified":"2018-10-16T20:08:38","modified_gmt":"2018-10-17T03:08:38","slug":"a-data-driven-approach-for-algebraic-loop-invariants-2","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/a-data-driven-approach-for-algebraic-loop-invariants-2\/","title":{"rendered":"A Data Driven Approach for Algebraic Loop Invariants"},"content":{"rendered":"
We describe a Guess-and-Check algorithm for computing algebraic equation invariants of the form wedge i f<\/i>i(x1<\/sub>, … , xn<\/sub>) = 0, where each fi<\/sub> is a polynomial over the variables x1<\/sub>, … , xn<\/sub> of the program. The Guess phase is data driven and derives a candidate invariant from data generated from concrete executions of the program. This candidate invariant is subsequently validated in a Check phase by an off-the-shelf SMT solver. Iterating between the two phases leads to a sound algorithm. Moreover, we are able to prove a bound on the number of decision procedure queries which Guess-and-Check requires to obtain a sound invariant. We show how Guess-and-Check can be extended to generate arbitrary boolean combinations of linear equalities as invariants, which enables us to generate expressive invariants to be consumed by tools that cannot handle non-linear arithmetic. We have evaluated our technique on a number of benchmark programs from recent papers on invariant generation. Our results are encouraging \u2013 we are able to effifficiently compute algebraic invariants in all cases, with only a few tests.<\/p>\n<\/div>\n <\/p>\n","protected":false},"excerpt":{"rendered":" We describe a Guess-and-Check algorithm for computing algebraic equation invariants of the form wedge i fi(x1, … , xn) = 0, where each fi is a polynomial over the variables x1, … , xn of the program. The Guess phase is data driven and derives a candidate invariant from data generated from concrete executions of […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13560],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-164120","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-programming-languages-software-engineering","msr-locale-en_us"],"msr_publishername":"Lecture Notes in Computer Science","msr_edition":"European Symposium on Programming (ESOP)","msr_affiliation":"","msr_published_date":"2013-03-01","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"205566","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","title":"esop13.pdf","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/esop13.pdf","id":205566,"label_id":0}],"msr_related_uploader":"","msr_attachments":[{"id":205566,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/esop13.pdf"}],"msr-author-ordering":[{"type":"user_nicename","value":"v-rahus","user_id":0,"rest_url":false},{"type":"text","value":"Saurabh Gupta","user_id":0,"rest_url":false},{"type":"user_nicename","value":"bharathh","user_id":31218,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=bharathh"},{"type":"text","value":"Alex Aiken","user_id":0,"rest_url":false},{"type":"text","value":"Percy Liang","user_id":0,"rest_url":false},{"type":"user_nicename","value":"adityan","user_id":30829,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=adityan"}],"msr_impact_theme":[],"msr_research_lab":[199562],"msr_event":[],"msr_group":[],"msr_project":[],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/164120"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/164120\/revisions"}],"predecessor-version":[{"id":523064,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/164120\/revisions\/523064"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=164120"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=164120"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=164120"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=164120"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=164120"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=164120"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=164120"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=164120"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=164120"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=164120"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=164120"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=164120"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=164120"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=164120"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=164120"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=164120"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}