{"id":164379,"date":"2013-05-01T00:00:00","date_gmt":"2013-05-01T00:00:00","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/msr-research-item\/understanding-computer-directed-utterances-in-multi-user-dialog-systems\/"},"modified":"2018-10-16T20:16:13","modified_gmt":"2018-10-17T03:16:13","slug":"understanding-computer-directed-utterances-in-multi-user-dialog-systems","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/understanding-computer-directed-utterances-in-multi-user-dialog-systems\/","title":{"rendered":"Understanding Computer-Directed Utterances in Multi-User Dialog Systems"},"content":{"rendered":"
\n

This work aims to understand user requests when multiple users are interacting with each other and a spoken dialog system. More specifically, we explore the use of multi-human conversational context to improve domain detection in a human-computer interaction system. We investigate the different effects of human-directed context and computer-directed context, and compare the impact of using different context window sizes. Furthermore, we employ topic segmentation to chunk conversations for determining context boundaries. The experimental results show that the use of conversational context helps reduce domain detection error rate, especially in some specific domains. And though computer directed context is more reliable, the results show that the combination of both computer and human addressed utterances within a reasonable window size performs the best.<\/p>\n<\/div>\n

<\/p>\n","protected":false},"excerpt":{"rendered":"

This work aims to understand user requests when multiple users are interacting with each other and a spoken dialog system. More specifically, we explore the use of multi-human conversational context to improve domain detection in a human-computer interaction system. We investigate the different effects of human-directed context and computer-directed context, and compare the impact of […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-164379","msr-research-item","type-msr-research-item","status-publish","hentry","msr-locale-en_us"],"msr_publishername":"IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)","msr_edition":"","msr_affiliation":"","msr_published_date":"2013-05-01","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"218518","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","title":"ICASSP13-MultiHuman.pdf","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2013\/05\/ICASSP13-MultiHuman.pdf","id":218518,"label_id":0}],"msr_related_uploader":"","msr_attachments":[{"id":218518,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2013\/05\/ICASSP13-MultiHuman.pdf"}],"msr-author-ordering":[{"type":"user_nicename","value":"dilekha","user_id":31630,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=dilekha"},{"type":"user_nicename","value":"gokhant","user_id":31896,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=gokhant"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[],"msr_project":[171150],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":171150,"post_title":"Spoken Language Understanding","post_name":"spoken-language-understanding","post_type":"msr-project","post_date":"2013-05-01 11:46:32","post_modified":"2019-08-19 14:48:51","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/spoken-language-understanding\/","post_excerpt":"Spoken language understanding (SLU) is an emerging field in between the areas of speech processing and natural language processing. The term spoken language understanding has largely been coined for targeted understanding of human speech directed at machines. This project covers our research on SLU tasks such as domain detection, intent determination, and slot filling, using data-driven methods. Projects Deeper Understanding: Moving\u00a0beyond shallow targeted understanding towards building domain independent SLU models. Scaling SLU: Quickly bootstrapping SLU…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/171150"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/164379","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/164379\/revisions"}],"predecessor-version":[{"id":525611,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/164379\/revisions\/525611"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=164379"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=164379"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=164379"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=164379"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=164379"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=164379"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=164379"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=164379"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=164379"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=164379"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=164379"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=164379"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=164379"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=164379"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=164379"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=164379"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}