{"id":164508,"date":"2013-05-01T00:00:00","date_gmt":"2013-05-01T00:00:00","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/msr-research-item\/using-multiple-versions-of-speech-input-in-phone-recognition\/"},"modified":"2018-10-16T20:19:57","modified_gmt":"2018-10-17T03:19:57","slug":"using-multiple-versions-of-speech-input-in-phone-recognition","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/using-multiple-versions-of-speech-input-in-phone-recognition\/","title":{"rendered":"Using multiple versions of speech input in phone recognition"},"content":{"rendered":"
\n

This study investigates the use of multiple versions of the same speech unit in automatic phone recognition. Two methods were applied to combine multiple utterance versions in decoding: cross forced-alignment and n-best ROVER. The phone error rate was reduced from 15% to 2% on isolated words and from 33% to 19% on TIMIT sentences. The error rate was reduced the most when the second version was added, and less so as each additional version was added. Depending on the language model weight, it might be better to use the language model only in n-best generation, but omit it in scoring the hypotheses applied to the combination methods. N-best ROVER effectiveness may be enhanced by lowering the language
\nmodel weight.<\/p>\n<\/div>\n

<\/p>\n","protected":false},"excerpt":{"rendered":"

This study investigates the use of multiple versions of the same speech unit in automatic phone recognition. Two methods were applied to combine multiple utterance versions in decoding: cross forced-alignment and n-best ROVER. The phone error rate was reduced from 15% to 2% on isolated words and from 33% to 19% on TIMIT sentences. The […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13545],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-164508","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-human-language-technologies","msr-locale-en_us"],"msr_publishername":"IEEE SPS","msr_edition":"Proc. IEEE ICASSP","msr_affiliation":"","msr_published_date":"2013-05-01","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"7591-7595","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"205484","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","title":"icassp13_final.pdf","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/icassp13_final.pdf","id":205484,"label_id":0}],"msr_related_uploader":"","msr_attachments":[{"id":205484,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/icassp13_final.pdf"}],"msr-author-ordering":[{"type":"text","value":"Mark Liberman","user_id":0,"rest_url":false},{"type":"text","value":"Jiahong Yuan","user_id":0,"rest_url":false},{"type":"user_nicename","value":"anstolck","user_id":31054,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=anstolck"},{"type":"text","value":"Wen Wang","user_id":0,"rest_url":false},{"type":"text","value":"Vikramjit Mitra","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[],"msr_project":[320309],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":320309,"post_title":"Speech Technology for Computational Phonetics and Reading Assessment","post_name":"speech-technology-corpus-based-phonetics","post_type":"msr-project","post_date":"2016-11-11 18:50:01","post_modified":"2017-06-19 09:42:28","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/speech-technology-corpus-based-phonetics\/","post_excerpt":"This project aims to develop new tools for phonetics research on large speech corpora without requiring traditional phonetic annotations by humans.\u00a0 The idea is to\u00a0adapt tools from speech recognition to replace the costly and time-consuming annotations usually required for phonetics research. This project was originally started by an NSF grant \"New tools and methods for very-large-scale phonetics research\" to UPenn\u00a0and SRI, with a Microsoft researcher as a consultant. More recently, work on computational phonetics has…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/320309"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/164508","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/164508\/revisions"}],"predecessor-version":[{"id":526750,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/164508\/revisions\/526750"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=164508"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=164508"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=164508"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=164508"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=164508"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=164508"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=164508"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=164508"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=164508"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=164508"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=164508"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=164508"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=164508"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=164508"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=164508"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=164508"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}