{"id":164627,"date":"2013-06-01T00:00:00","date_gmt":"2013-06-01T00:00:00","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/msr-research-item\/thompson-sampling-for-contextual-bandits-with-linear-payoffs\/"},"modified":"2018-10-16T20:33:18","modified_gmt":"2018-10-17T03:33:18","slug":"thompson-sampling-for-contextual-bandits-with-linear-payoffs","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/thompson-sampling-for-contextual-bandits-with-linear-payoffs\/","title":{"rendered":"Thompson Sampling For Contextual Bandits With Linear Payoffs"},"content":{"rendered":"
Thompson Sampling is one of the oldest heuristics for multi-armed bandit problems. It is a randomized algorithm based on Bayesian ideas, and has recently generated signi\ufb01cant interest after several studies demonstrated it to have better empirical performance compared to the stateof-the-art methods. However, many questions regarding its theoretical performance remained open. In this paper, we design and analyze a generalization of Thompson Sampling algorithm for the stochastic contextual multi-armed bandit problem with linear payo\ufb00 functions, when the contexts are provided by an adaptive adversary. This is among the most important and widely studied versions of the contextual bandits problem. We provide the \ufb01rst theoretical guarantees for the contextual version of Thompson Sampling. We prove a high probability regret bound of \u02dc O(d3\/2\u221aT) (or \u02dc O(dpT log(N))), which is the best regret bound achieved by any computationally e\ufb03cient algorithm available for this problem in the current literature, and is within a factor of \u221ad (or plog(N)) of the information-theoretic lower bound for this problem.<\/p>\n","protected":false},"excerpt":{"rendered":"
Thompson Sampling is one of the oldest heuristics for multi-armed bandit problems. It is a randomized algorithm based on Bayesian ideas, and has recently generated signi\ufb01cant interest after several studies demonstrated it to have better empirical performance compared to the stateof-the-art methods. However, many questions regarding its theoretical performance remained open. In this paper, we […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13561,13556],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-164627","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-algorithms","msr-research-area-artificial-intelligence","msr-locale-en_us"],"msr_publishername":"","msr_edition":"30th International Conference on Machine Learning (ICML)","msr_affiliation":"","msr_published_date":"2013-06-01","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"218422","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","title":"report-contextual.pdf","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2013\/06\/report-contextual.pdf","id":218422,"label_id":0}],"msr_related_uploader":"","msr_attachments":[{"id":218422,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2013\/06\/report-contextual.pdf"}],"msr-author-ordering":[{"type":"user_nicename","value":"shipra","user_id":33620,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=shipra"},{"type":"user_nicename","value":"navingo","user_id":33063,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=navingo"}],"msr_impact_theme":[],"msr_research_lab":[199562],"msr_event":[],"msr_group":[144938,144940],"msr_project":[171257],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":171257,"post_title":"Virtual Algorithms Center (VIRAL)","post_name":"virtual-algorithms-center-viral","post_type":"msr-project","post_date":"2013-12-27 16:08:46","post_modified":"2020-04-15 15:31:59","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/virtual-algorithms-center-viral\/","post_excerpt":"MSR has a strong group of scientists working on algorithm design, analysis, and experimental evaluation, as well as researchers in related areas (e.g., coding theory), but no formal algorithms group. The Virtual Algorithms Center (VIRAL) brings these individuals together. The goals of the center is to enhance collaboration between algorithms researchers and the rest of MSR, provide internal consulting, and give an external view of the algorithms research at MSR. ","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/171257"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/164627","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":2,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/164627\/revisions"}],"predecessor-version":[{"id":418355,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/164627\/revisions\/418355"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=164627"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=164627"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=164627"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=164627"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=164627"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=164627"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=164627"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=164627"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=164627"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=164627"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=164627"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=164627"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=164627"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=164627"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=164627"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=164627"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}