{"id":164801,"date":"2013-08-01T00:00:00","date_gmt":"2013-08-01T00:00:00","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/msr-research-item\/leveraging-knowledge-graphs-for-web-scale-unsupervised-semantic-parsing\/"},"modified":"2018-10-16T20:57:29","modified_gmt":"2018-10-17T03:57:29","slug":"leveraging-knowledge-graphs-for-web-scale-unsupervised-semantic-parsing","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/leveraging-knowledge-graphs-for-web-scale-unsupervised-semantic-parsing\/","title":{"rendered":"Leveraging Knowledge Graphs for Web-Scale Unsupervised Semantic Parsing"},"content":{"rendered":"
The past decade has seen the emergence of web-scale structured and linked semantic knowledge resources (e.g., Freebase, DBPedia). These semantic knowledge graphs provide a scalable \u201cschema for the web\u201d, representing a significant opportunity for the spoken language understanding (SLU) research community. This paper leverages these resources to bootstrap a web-scale semantic parser with no requirement for semantic schema design, no data collection, and no manual annotations. Our approach is based on an iterative graph crawl algorithm. From an initial seed node (entity-type), the method learns the related entity-types from the graph structure, and automatically annotates documents that can be linked to the node (e.g., Wikipedia articles, web search documents). Following the branches, the graph is crawled and the procedure is repeated. The resulting collection of annotated documents is used to bootstrap web-scale conditional random field (CRF) semantic parsers. Finally, we use a maximum-a-posteriori (MAP) unsupervised adaptation technique on sample data from a specific domain to refine the parsers. The scale of the unsupervised parsers is on the order of thousands of domains and entity-types, millions of entities, and hundreds of millions of relations. The precision-recall of the semantic parsers trained with our unsupervised method approaches those trained with supervised annotations.<\/p>\n<\/div>\n
<\/p>\n","protected":false},"excerpt":{"rendered":"
The past decade has seen the emergence of web-scale structured and linked semantic knowledge resources (e.g., Freebase, DBPedia). These semantic knowledge graphs provide a scalable \u201cschema for the web\u201d, representing a significant opportunity for the spoken language understanding (SLU) research community. This paper leverages these resources to bootstrap a web-scale semantic parser with no requirement […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13545,13554],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-164801","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-human-language-technologies","msr-research-area-human-computer-interaction","msr-locale-en_us"],"msr_publishername":"International Speech Communication Association","msr_edition":"Proceedings of Interspeech","msr_affiliation":"","msr_published_date":"2013-08-01","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"Proceedings of Interspeech","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"218341","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","title":"IS13-Larry.pdf","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2013\/08\/IS13-Larry.pdf","id":218341,"label_id":0},{"type":"file","title":"LeveragingKGsIS13_Heck_final2.pdf","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2013\/08\/LeveragingKGsIS13_Heck_final2.pdf","id":218344,"label_id":0}],"msr_related_uploader":"","msr_attachments":[{"id":218344,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2013\/08\/LeveragingKGsIS13_Heck_final2.pdf"},{"id":218341,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2013\/08\/IS13-Larry.pdf"}],"msr-author-ordering":[{"type":"user_nicename","value":"lheck","user_id":32659,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=lheck"},{"type":"user_nicename","value":"dilekha","user_id":31630,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=dilekha"},{"type":"user_nicename","value":"gokhant","user_id":31896,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=gokhant"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[],"msr_project":[171393,171150],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":171393,"post_title":"Knowledge Graphs and Linked Big Data Resources for Conversational Understanding","post_name":"knowledge-graphs-and-linked-big-data-resources-for-conversational-understanding","post_type":"msr-project","post_date":"2014-08-13 20:10:32","post_modified":"2017-06-19 11:05:46","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/knowledge-graphs-and-linked-big-data-resources-for-conversational-understanding\/","post_excerpt":"Interspeech 2014 Tutorial Web Page State-of-the-art statistical spoken language processing typically requires significant manual effort to construct domain-specific schemas (ontologies) as well as manual effort to annotate training data against these schemas. At the same time, a recent surge of activity and progress on semantic web-related concepts from the large search-engine companies represents a potential alternative to the manually intensive design of spoken language processing systems. Standards such as schema.org have been established for schemas…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/171393"}]}},{"ID":171150,"post_title":"Spoken Language Understanding","post_name":"spoken-language-understanding","post_type":"msr-project","post_date":"2013-05-01 11:46:32","post_modified":"2019-08-19 14:48:51","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/spoken-language-understanding\/","post_excerpt":"Spoken language understanding (SLU) is an emerging field in between the areas of speech processing and natural language processing. The term spoken language understanding has largely been coined for targeted understanding of human speech directed at machines. This project covers our research on SLU tasks such as domain detection, intent determination, and slot filling, using data-driven methods. Projects Deeper Understanding: Moving\u00a0beyond shallow targeted understanding towards building domain independent SLU models. Scaling SLU: Quickly bootstrapping SLU…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/171150"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/164801","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":2,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/164801\/revisions"}],"predecessor-version":[{"id":531624,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/164801\/revisions\/531624"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=164801"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=164801"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=164801"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=164801"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=164801"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=164801"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=164801"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=164801"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=164801"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=164801"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=164801"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=164801"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=164801"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=164801"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=164801"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=164801"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}