{"id":164866,"date":"2013-08-01T00:00:00","date_gmt":"2013-08-01T00:00:00","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/msr-research-item\/bayesian-inference-using-data-flow-analysis-2\/"},"modified":"2019-08-23T07:55:27","modified_gmt":"2019-08-23T14:55:27","slug":"bayesian-inference-using-data-flow-analysis-2","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/bayesian-inference-using-data-flow-analysis-2\/","title":{"rendered":"Bayesian Inference Using Data Flow Analysis"},"content":{"rendered":"
We present a new algorithm for Bayesian inference over probabilistic programs, based on data flow analysis techniques from the program analysis community. Unlike existing techniques for Bayesian inference on probabilistic programs, our data flow analysis algorithm is able to perform inference directly on probabilistic programs with loops. Even for loop-free programs, we show that data flow analysis offers better precision and better performance benefits over existing techniques. We also describe heuristics that are crucial for our inference to scale, and present an empirical evaluation of our algorithm over a range of benchmarks.<\/p>\n<\/div>\n
<\/p>\n","protected":false},"excerpt":{"rendered":"
We present a new algorithm for Bayesian inference over probabilistic programs, based on data flow analysis techniques from the program analysis community. Unlike existing techniques for Bayesian inference on probabilistic programs, our data flow analysis algorithm is able to perform inference directly on probabilistic programs with loops. Even for loop-free programs, we show that data […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556,13560],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-164866","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-research-area-programming-languages-software-engineering","msr-locale-en_us"],"msr_publishername":"ACM","msr_edition":"","msr_affiliation":"","msr_published_date":"2013-8-1","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"205288","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/paper-33.pdf","id":"205288","title":"paper.pdf","label_id":"243109","label":0},{"type":"doi","viewUrl":"false","id":"false","title":"10.1145\/2491411.2491423","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[{"id":205288,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/paper-33.pdf"}],"msr-author-ordering":[{"type":"text","value":"Guillaume Claret","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Sriram Rajamani","user_id":33711,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Sriram Rajamani"},{"type":"user_nicename","value":"Aditya Nori","user_id":30829,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Aditya Nori"},{"type":"user_nicename","value":"Andy Gordon","user_id":30825,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Andy Gordon"},{"type":"user_nicename","value":"Johannes Borgstr\u00f6m","user_id":32350,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Johannes Borgstr\u00f6m"}],"msr_impact_theme":[],"msr_research_lab":[199562],"msr_event":[],"msr_group":[],"msr_project":[171174],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":171174,"post_title":"R2: A Probabilistic Programming System","post_name":"r2-a-probabilistic-programming-system","post_type":"msr-project","post_date":"2013-07-16 23:44:21","post_modified":"2017-06-14 09:01:38","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/r2-a-probabilistic-programming-system\/","post_excerpt":"What is R2? R2 is a probabilistic programming system that uses powerful techniques from program analysis and verification for efficient Markov Chain Monte Carlo (MCMC) inference. The language that is used to describe probabilistic models in R2 is based on C#.R2 compiles the given model into executable code to generate samples from the posterior distribution. The inference algorithm currently implemented in R2 is a variation of the Metropolis-Hastings sampling algorithm. Getting R2 Click on this…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/171174"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/164866"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":2,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/164866\/revisions"}],"predecessor-version":[{"id":533057,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/164866\/revisions\/533057"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=164866"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=164866"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=164866"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=164866"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=164866"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=164866"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=164866"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=164866"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=164866"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=164866"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=164866"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=164866"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=164866"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=164866"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=164866"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=164866"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}