https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2016\/06\/Fine-grained-Air-quality-inference.mp4<\/a><\/video><\/div><\/p>\n<\/div>\n<\/p>\n","protected":false},"excerpt":{"rendered":"
Information about urban air quality, e.g., the concentration of PM2.5, is of great importance to protect human health and control air pollution. While there are limited air-quality-monitor-stations in a city, air quality varies in urban spaces non-linearly and depends on multiple factors, such as meteorology, traffic volume, and land uses. In this paper, we infer […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556,13563],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-164935","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-research-area-data-platform-analytics","msr-locale-en_us"],"msr_publishername":"","msr_edition":"Proceedings of the 19th SIGKDD conference on Knowledge Discovery and Data Mining (KDD 2013)","msr_affiliation":"","msr_published_date":"2013-08-01","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"205312","msr_publicationurl":"http:\/\/urbanair.msra.cn\/","msr_doi":"","msr_publication_uploader":[{"type":"file","title":"U-Air-KDD-camera-ready.pdf","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/U-Air-KDD-camera-ready.pdf","id":205312,"label_id":0},{"type":"file","title":"U-Air-short.pptx","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/U-Air-short.pptx","id":205315,"label_id":0},{"type":"file","title":"Air%20Quality%20Data.zip","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/Air20Quality20Data.zip","id":205314,"label_id":0},{"type":"file","title":"U-Air-Full.pptx","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/U-Air-Full.pptx","id":205313,"label_id":0},{"type":"url","title":"http:\/\/urbanair.msra.cn\/","viewUrl":false,"id":false,"label_id":0}],"msr_related_uploader":"","msr_attachments":[{"id":0,"url":"http:\/\/urbanair.msra.cn\/"},{"id":205315,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/U-Air-short.pptx"},{"id":205314,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/Air20Quality20Data.zip"},{"id":205313,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/U-Air-Full.pptx"},{"id":205312,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/U-Air-KDD-camera-ready.pdf"}],"msr-author-ordering":[{"type":"user_nicename","value":"yuzheng","user_id":35088,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=yuzheng"},{"type":"text","value":"Furui Liu","user_id":0,"rest_url":false},{"type":"text","value":"Hsun-Ping Hsieh","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[],"msr_project":[171316,170824],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":171316,"post_title":"Urban Air","post_name":"urban-air","post_type":"msr-project","post_date":"2014-03-24 02:17:14","post_modified":"2018-04-02 19:26:10","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/urban-air\/","post_excerpt":"Using a diversity of big data to infer and predict fine-grained air quality throughout a city, and finally tackle air pollutions. \u00a0 http:\/\/urbanair.msra.cn\/\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0Install Mobile Apps Many countries are suffering from air pollutions. Many cities have built a few\u00a0air quality monitoring stations to inform people urban air quality every hour. Influenced by multiple complex factors, however,\u00a0urban air quality is\u00a0highly skewed in a city, varying by locations significantly and changing over time differently in different places.…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/171316"}]}},{"ID":170824,"post_title":"Urban Computing","post_name":"urban-computing","post_type":"msr-project","post_date":"2016-07-03 10:26:01","post_modified":"2018-04-07 17:32:40","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/urban-computing\/","post_excerpt":"Concept\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 (\u4e2d\u6587\u4e3b\u9875) Urban computing is a process of acquisition, integration, and analysis of big and heterogeneous data generated by a diversity of sources in urban spaces, such as sensors, devices, vehicles, buildings, and human, to tackle the major issues that cities face, e.g. air pollution, increased energy consumption and traffic congestion. Urban computing connects unobtrusive and ubiquitous sensing technologies, advanced data management and analytics models, and novel visualization methods, to create win-win-win solutions that improve…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/170824"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/164935"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":10,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/164935\/revisions"}],"predecessor-version":[{"id":534705,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/164935\/revisions\/534705"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=164935"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=164935"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=164935"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=164935"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=164935"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=164935"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=164935"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=164935"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=164935"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=164935"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=164935"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=164935"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=164935"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=164935"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=164935"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=164935"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}