{"id":164990,"date":"2013-06-01T00:00:00","date_gmt":"2013-06-01T00:00:00","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/msr-research-item\/one-bit-compressed-sensing-provable-support-and-vector-recovery\/"},"modified":"2018-10-16T21:22:54","modified_gmt":"2018-10-17T04:22:54","slug":"one-bit-compressed-sensing-provable-support-and-vector-recovery","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/one-bit-compressed-sensing-provable-support-and-vector-recovery\/","title":{"rendered":"One-bit Compressed Sensing: Provable Support and Vector Recovery"},"content":{"rendered":"
In this paper, we study the problem of onebit compressed sensing (1-bit CS), where the goal is to design a measurement matrix A and a recovery algorithm such that a k-sparse unit vector x\u2217 can be efficiently recovered from the sign of its linear measurements, i.e., b = sign(Ax\u2217). This is an important problem for signal acquisition and has several learning applications as well, e.g., multi-label classification (Hsu et al., 2009). We study this problem in two settings: a) support recovery: recover the support of x\u2217, b) approximate vector recovery: recover a unit vector hat x such that ||hat x – x*||\u2264 \u03b5. For support recovery, we propose two novel and efficient solutions based on two combinatorial structures: union free families of sets and expanders. In contrast to existing methods for support recovery, our methods are universal i.e. a single measurement matrix A can recover all the signals. For approximate recovery, we propose the first method to recover a sparse vector using a near optimal number of measurements. We also empirically validate our algorithms and demonstrate that our algorithms recover the true signal using fewer measurements than the existing methods.<\/p>\n<\/div>\n
<\/p>\n","protected":false},"excerpt":{"rendered":"
In this paper, we study the problem of onebit compressed sensing (1-bit CS), where the goal is to design a measurement matrix A and a recovery algorithm such that a k-sparse unit vector x\u2217 can be efficiently recovered from the sign of its linear measurements, i.e., b = sign(Ax\u2217). This is an important problem for […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-164990","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-locale-en_us"],"msr_publishername":"Journal of Machine Learning Research","msr_edition":"International Conference on Machine Learning (ICML)","msr_affiliation":"","msr_published_date":"2013-06-01","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"International Conference on Machine Learning (ICML)","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"205397","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","title":"1bitcs.pdf","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/1bitcs.pdf","id":205397,"label_id":0}],"msr_related_uploader":"","msr_attachments":[{"id":205397,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/1bitcs.pdf"}],"msr-author-ordering":[{"type":"text","value":"Sivakant Gopi","user_id":0,"rest_url":false},{"type":"user_nicename","value":"praneeth","user_id":33279,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=praneeth"},{"type":"user_nicename","value":"prajain","user_id":33278,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=prajain"},{"type":"user_nicename","value":"adityan","user_id":30829,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=adityan"}],"msr_impact_theme":[],"msr_research_lab":[199562],"msr_event":[],"msr_group":[],"msr_project":[],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/164990"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":2,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/164990\/revisions"}],"predecessor-version":[{"id":535394,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/164990\/revisions\/535394"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=164990"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=164990"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=164990"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=164990"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=164990"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=164990"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=164990"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=164990"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=164990"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=164990"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=164990"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=164990"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=164990"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=164990"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=164990"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=164990"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}