{"id":165174,"date":"2013-07-01T00:00:00","date_gmt":"2013-07-01T00:00:00","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/msr-research-item\/applications-of-symbolic-finite-automata\/"},"modified":"2018-10-16T21:41:34","modified_gmt":"2018-10-17T04:41:34","slug":"applications-of-symbolic-finite-automata","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/applications-of-symbolic-finite-automata\/","title":{"rendered":"Applications of Symbolic Finite Automata"},"content":{"rendered":"
Symbolic automata theory lifts classical automata theory to rich alphabet theories. It does so by replacing an explicit alphabet with an alphabet described implicitly by a Boolean algebra. How does this lifting affect the basic algorithms that lay the foundation for modern automata theory and what is the incentive for doing this? We investigate these questions here. In our approach we use state-of-the-art constraint solving techniques for automata analysis that are both expressive and efficient, even for very large and infinite alphabets. We show how symbolic finite automata enable applications ranging from modern regex analysis to advanced web security analysis, that were out of reach with prior methods.<\/p>\n<\/div>\n
<\/p>\n","protected":false},"excerpt":{"rendered":"
Symbolic automata theory lifts classical automata theory to rich alphabet theories. It does so by replacing an explicit alphabet with an alphabet described implicitly by a Boolean algebra. How does this lifting affect the basic algorithms that lay the foundation for modern automata theory and what is the incentive for doing this? We investigate these […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13561,13560],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-165174","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-algorithms","msr-research-area-programming-languages-software-engineering","msr-locale-en_us"],"msr_publishername":"Springer","msr_edition":"CIAA'13","msr_affiliation":"","msr_published_date":"2013-07-01","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"16\u201323","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"7982","msr_number":"","msr_editors":"","msr_series":"LNCS","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"205363","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","title":"ciaa13.pdf","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/ciaa13.pdf","id":205363,"label_id":0}],"msr_related_uploader":"","msr_attachments":[{"id":205363,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/ciaa13.pdf"}],"msr-author-ordering":[{"type":"user_nicename","value":"margus","user_id":32806,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=margus"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[144812],"msr_project":[170457],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":170457,"post_title":"Rex - Regular Expression Exploration","post_name":"rex-regular-expression-exploration","post_type":"msr-project","post_date":"2010-03-27 22:59:19","post_modified":"2017-06-14 14:56:35","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/rex-regular-expression-exploration\/","post_excerpt":"Rex is a tool that explores .NET regexes and generates members efficiently. Try out\u00a0Rex in duel mode at http:\/\/rise4fun.com\/rex! The duel mode is a game\u00a0where you have\u00a0to guess a secret (hidden) regex. On each attempt, Rex generates strings that match or don't match the same way as the secret regex. The game uses the ASCII range of characters, i.e. characters from code 0 to 127 and displays various automata associated to\u00a0the regexes. How does the…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/170457"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/165174"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":2,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/165174\/revisions"}],"predecessor-version":[{"id":538152,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/165174\/revisions\/538152"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=165174"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=165174"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=165174"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=165174"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=165174"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=165174"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=165174"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=165174"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=165174"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=165174"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=165174"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=165174"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=165174"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=165174"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=165174"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=165174"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}