{"id":165273,"date":"2008-01-01T00:00:00","date_gmt":"2008-01-01T00:00:00","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/msr-research-item\/the-sri-icsi-spring-2007-meeting-and-lecture-recognition-system\/"},"modified":"2018-10-16T21:55:18","modified_gmt":"2018-10-17T04:55:18","slug":"the-sri-icsi-spring-2007-meeting-and-lecture-recognition-system","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/the-sri-icsi-spring-2007-meeting-and-lecture-recognition-system\/","title":{"rendered":"The SRI-ICSI Spring 2007 Meeting and Lecture Recognition System"},"content":{"rendered":"
We describe the latest version of the SRI-ICSI meeting and lecture recognition system, as was used in the NIST RT-07 evaluations, highlighting improvements made over the last year. Changes in the acoustic preprocessing include updated beamforming software for processing of multiple distant microphones, and various adjustments to the speech segmenter for close-talking microphones. Acoustic models were improved by the combined
\nuse of neural-net-estimated phone posterior features, discriminative feature transforms trained with fMPE-MAP, and discriminative Gaussian estimation usng MPE-MAP, as
\nwell as model adaptation specifically to nonnative and non-American speakers.
\nThe net effect of these enhancements was a 14-16% relative error reduction on distant microphones, and a 16-17% error reduction on close-talking microphones. Also, for the first time, we report results on a new \u201ccoffee break\u201d meeting genre, and on a new NIST metric designed to evaluate combined speech diarization and recognition.<\/p>\n<\/div>\n
<\/p>\n","protected":false},"excerpt":{"rendered":"
We describe the latest version of the SRI-ICSI meeting and lecture recognition system, as was used in the NIST RT-07 evaluations, highlighting improvements made over the last year. Changes in the acoustic preprocessing include updated beamforming software for processing of multiple distant microphones, and various adjustments to the speech segmenter for close-talking microphones. Acoustic models […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13545],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-165273","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-human-language-technologies","msr-locale-en_us"],"msr_publishername":"Springer","msr_edition":"Multimodal Technologies for Perception of Humans. International Evaluation Workshops CLEAR 2007 and RT 2007","msr_affiliation":"","msr_published_date":"2007-05-10","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"Multimodal Technologies for Perception of Humans. International Evaluation Workshops CLEAR 2007 and RT 2007","msr_pages_string":"450-463","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"226177","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","title":"paper.pdf","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2008\/01\/paper-1.pdf","id":226177,"label_id":0}],"msr_related_uploader":"","msr_attachments":[{"id":226177,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2008\/01\/paper-1.pdf"}],"msr-author-ordering":[{"type":"user_nicename","value":"anstolck","user_id":31054,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=anstolck"},{"type":"text","value":"Kofi Boakye","user_id":0,"rest_url":false},{"type":"text","value":"\u00d6zg\u00fcr \u00c7etin","user_id":0,"rest_url":false},{"type":"text","value":"Adam Janin","user_id":0,"rest_url":false},{"type":"text","value":"Mathew Magimai-Doss","user_id":0,"rest_url":false},{"type":"text","value":"Chuck Wooters","user_id":0,"rest_url":false},{"type":"text","value":"Jing Zheng","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[],"msr_project":[171185],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":171185,"post_title":"Meeting Recognition and Understanding","post_name":"meeting-recognition-and-understanding","post_type":"msr-project","post_date":"2013-07-30 14:28:35","post_modified":"2023-08-12 21:11:41","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/meeting-recognition-and-understanding\/","post_excerpt":"In most organizations, staff spend many hours in meetings. This project addresses all levels of analysis and understanding, from speaker tracking and robust speech transcription to meaning extraction and summarization, with the goal of increasing productivity both during the meeting and after, for both participants and nonparticipants. The Meeting Recognition and Understanding project is a collection of online and offline spoken language understanding tasks. The following functions could be performed both on- and offline, but…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/171185"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/165273","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/165273\/revisions"}],"predecessor-version":[{"id":403322,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/165273\/revisions\/403322"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=165273"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=165273"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=165273"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=165273"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=165273"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=165273"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=165273"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=165273"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=165273"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=165273"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=165273"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=165273"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=165273"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=165273"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=165273"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=165273"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}