{"id":165782,"date":"2013-10-01T00:00:00","date_gmt":"2013-10-01T00:00:00","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/msr-research-item\/physical-analytics-a-new-frontier-for-indoor-location-research\/"},"modified":"2018-10-16T20:51:34","modified_gmt":"2018-10-17T03:51:34","slug":"physical-analytics-a-new-frontier-for-indoor-location-research","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/physical-analytics-a-new-frontier-for-indoor-location-research\/","title":{"rendered":"Physical Analytics: A New Frontier for (Indoor) Location Research"},"content":{"rendered":"
\n

The large body of research on localization has been driven by the goal of providing users with location-based services, be it mapping and navigation or local alerts and advertisements. However, as we discuss in this paper, location information can over time provide deep insight about about a user, going well beyond the location domain itself. We argue that unlocking the wealth of information available from location is valuable and represents a new and promising frontier for location-related research, especially in the indoor domain. We call this Physical Analytics, analogous to Online Analytics, with footsteps taking the place of a clickstream. We describe research opportunities, challenges, and our initial investigation in Physical Analytics.<\/p>\n<\/div>\n

<\/p>\n","protected":false},"excerpt":{"rendered":"

The large body of research on localization has been driven by the goal of providing users with location-based services, be it mapping and navigation or local alerts and advertisements. However, as we discuss in this paper, location information can over time provide deep insight about about a user, going well beyond the location domain itself. […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13547],"msr-publication-type":[193718],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-165782","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-systems-and-networking","msr-locale-en_us"],"msr_publishername":"Microsoft Technical Report","msr_edition":"Microsoft Research Technical Report","msr_affiliation":"","msr_published_date":"2013-10-01","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"MSR-TR-2013-107","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"Microsoft Research Technical Report","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"205210","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","title":"msr-tr-2013-107.pdf","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/msr-tr-2013-107.pdf","id":205210,"label_id":0}],"msr_related_uploader":"","msr_attachments":[{"id":205210,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2016\/02\/msr-tr-2013-107.pdf"}],"msr-author-ordering":[{"type":"text","value":"Rajalakshmi Nandakumar","user_id":0,"rest_url":false},{"type":"text","value":"Swati Rallapalli","user_id":0,"rest_url":false},{"type":"user_nicename","value":"krchinta","user_id":32577,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=krchinta"},{"type":"user_nicename","value":"padmanab","user_id":33180,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=padmanab"},{"type":"text","value":"Lili Qiu","user_id":0,"rest_url":false},{"type":"text","value":"Aishwarya Ganesan","user_id":0,"rest_url":false},{"type":"user_nicename","value":"saikat","user_id":33493,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=saikat"},{"type":"text","value":"Deepanker Aggarwal","user_id":0,"rest_url":false},{"type":"text","value":"Aakash Goenka","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[199562],"msr_event":[],"msr_group":[144725,144939],"msr_project":[171101],"publication":[],"video":[],"download":[],"msr_publication_type":"techreport","related_content":{"projects":[{"ID":171101,"post_title":"Phytics: Physical Analytics","post_name":"phytics-physical-analytics","post_type":"msr-project","post_date":"2013-02-18 00:54:57","post_modified":"2020-12-10 19:56:31","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/phytics-physical-analytics\/","post_excerpt":"The goal of the Physical Analytics project, or Phytics, is to perform analytics on the physical actions of users. Such analytics would be valuable in a variety of contexts where the design of a physical space is intertwined with how users use the space, e.g., to understand the behaviour of shoppers in mall or a store, which might be indicative of their interests; to fine-tune the layout of services in an airport or a train…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/171101"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/165782"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":2,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/165782\/revisions"}],"predecessor-version":[{"id":530879,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/165782\/revisions\/530879"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=165782"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=165782"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=165782"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=165782"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=165782"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=165782"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=165782"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=165782"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=165782"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=165782"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=165782"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=165782"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=165782"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=165782"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=165782"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=165782"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}