{"id":165787,"date":"2011-01-01T00:00:00","date_gmt":"2011-01-01T00:00:00","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/msr-research-item\/monotone-multi-armed-bandit-allocations\/"},"modified":"2018-10-16T20:01:36","modified_gmt":"2018-10-17T03:01:36","slug":"monotone-multi-armed-bandit-allocations","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/monotone-multi-armed-bandit-allocations\/","title":{"rendered":"Monotone multi-armed bandit allocations"},"content":{"rendered":"
We present a novel angle for multi-armed bandits (henceforth abbreviated MAB) which follows from the recent work on \\emphMAB mechanisms \\citepMechMAB-ec09,DevanurK08,Transform-ec10. The new problem is, essentially, about designing MAB algorithms under an additional constraint motivated by their application to MAB mechanisms.This note is self-contained, although some familiarity with MAB is assumed; we refer the reader to \\citeCesaBL-book for more background.<\/p>\n","protected":false},"excerpt":{"rendered":"
We present a novel angle for multi-armed bandits (henceforth abbreviated MAB) which follows from the recent work on \\emphMAB mechanisms \\citepMechMAB-ec09,DevanurK08,Transform-ec10. The new problem is, essentially, about designing MAB algorithms under an additional constraint motivated by their application to MAB mechanisms.This note is self-contained, although some familiarity with MAB is assumed; we refer the reader […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-165787","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-locale-en_us"],"msr_publishername":"","msr_edition":"Proceedings of the 24th Annual Conference on Learning Theory","msr_affiliation":"","msr_published_date":"2011-04-07","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"http:\/\/proceedings.mlr.press\/v19\/slivkins11b.html","msr_doi":"","msr_publication_uploader":[{"type":"url","title":"http:\/\/proceedings.mlr.press\/v19\/slivkins11b.html","viewUrl":false,"id":false,"label_id":0}],"msr_related_uploader":"","msr_attachments":[{"id":0,"url":"http:\/\/proceedings.mlr.press\/v19\/slivkins11b.html"}],"msr-author-ordering":[{"type":"text","value":"Aleksandrs Slivkins","user_id":0,"rest_url":false},{"type":"user_nicename","value":"slivkins","user_id":33685,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=slivkins"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[144902],"msr_project":[171233],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":171233,"post_title":"Explore-Exploit Learning @MSR-NYC","post_name":"explore-exploit-learning","post_type":"msr-project","post_date":"2013-10-24 16:52:27","post_modified":"2017-08-10 13:39:37","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/explore-exploit-learning\/","post_excerpt":"This is an umbrella project for machine learning with explore-exploit tradeoff: the trade-off between acquiring and using information. This is a mature, yet very active, research area studied in Machine Learning, Theoretical Computer Science, Operations Research, and Economics. Much of our activity focuses on \"multi-armed bandits\" and \"contextual bandits\", relatively simple and yet very powerful models for explore-exploit tradeoff. We are located in (or heavily collaborating with)\u00a0Microsoft Research New York City. Most of us are…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/171233"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/165787"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":2,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/165787\/revisions"}],"predecessor-version":[{"id":432456,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/165787\/revisions\/432456"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=165787"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=165787"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=165787"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=165787"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=165787"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=165787"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=165787"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=165787"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=165787"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=165787"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=165787"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=165787"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=165787"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=165787"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=165787"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=165787"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}